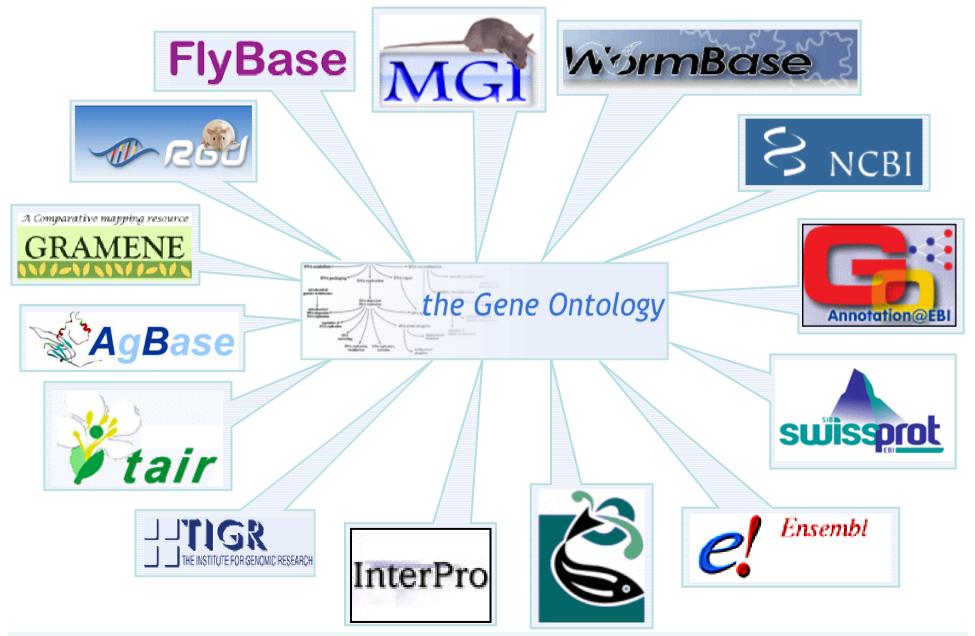

Estimating the Quality of Ontology-Based Annotations by Considering Evolutionary Changes

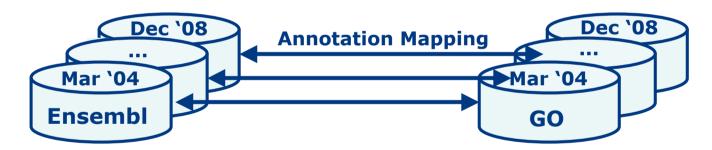
Anika Gross, Michael Hartung, Toralf Kirsten, Erhard Rahm



Annotations in Life Sciences

- Increasing use of ontologies in life sciences, mainly ontology-based annotations
- Annotations Semantic descriptions of properties of biological objects, e.g., a protein is associated to a specific biological process

Usage of Gene Ontology (GO)



Motivation

Domain knowledge changes

- > New findings, addition and revision of knowledge
- > Result: evolution of data sources
- First analysis at DILS 2008*
 - Focused on evolution in ontologies and protein sources
- What about annotations?

		Pro	vena	nce		
Ensembl ID	Gene Ontology Concept ID	V ₄₈ V ₄₉ V ₅₀ V ₅₁		V ₅₂		
ENSP00000344151	GO:0015808 (L-alanine transport)					
ENSP00000230480	GO:0005615 (extracellular space)					
ENSP00000352999	GO:0006915 (apoptosis)					
	experimentally verified author statem	ent a	utoma	tically	annot	ated

Different stability of annotations due to different evolution and provenance changes

Application of GO Annotations

 Functional profiling of large data sets (e.g. gene expression microarrays) to find significantly shared GO terms

GO Term	Aspect	P-value	Sample	Background	Genes
			frequency	frequency	
GO:0002376 immune system process	Р	1.02e-07	10/14 (71.4%)	1052/19635	Q9NZ08 P42081 015533 Q6P179
				(5.4%)	P19838 Q9NZQ7 P33681 Q03519
GO:0048002 antigen processing and presentation of peptide	Р	3.26e-07	4/14 (28.6%)	18/19635 (0.1%)	Q9NZ08 015533 Q6P179 Q03519
antigen			http://amigo.	geneontology.org,	/cgi-bin/amigo/term_enrichment1

Unstable input annotations

 Impact on application results (Garbage In/Garbage Out principle)

Quality of Annotations

Possible criteria

- Correctness
- Completeness
- Stability
- Provenance

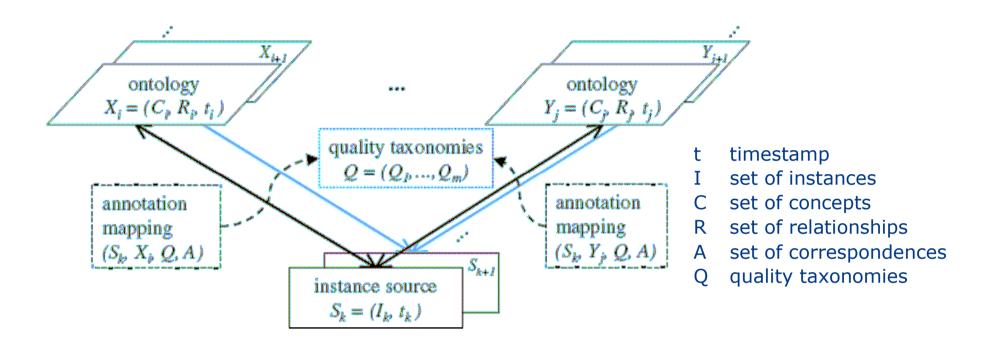
• ...

Which
annotations fit
best for my
application?

How many highquality annotations are available in a source?

How was the annotation created?,

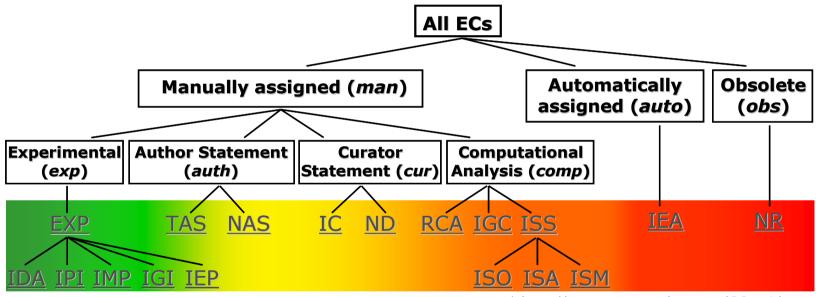
How reliable is the annotation?


Contributions

- General approach to analyze annotation mappings considering evolutionary changes
- Evolution-aware annotation model, change operations
- Evolution-based quality measures to identify reliable annotations (stability, provenance)
- Comparative evaluation in two large life science sources (Ensembl, Swiss-Prot)

Overview

- Motivation
- Annotations and quality
- Annotation model, change operations
 - Quantitative evaluation of annotation evolution
- Estimating annotation quality
 - Stability measures
 - Evaluation results
- Conclusion


Annotation Model

- Annotation $a \in A$, $a = (i, c, \{q\})$
- Linear versioning scheme
- Refers to quality taxonomies (e.g., provenance)

Provenance Taxonomy - Evidence Codes

 Evidence Code (EC) * = indicates how the annotation to a particular term has been derived, e.g., by which type of experiment or analysis

- * http://www.geneontology.org/GO.evidence
- Other taxonomies are possible
 - age
 - stability
 - 0 ...

Evolution Operations

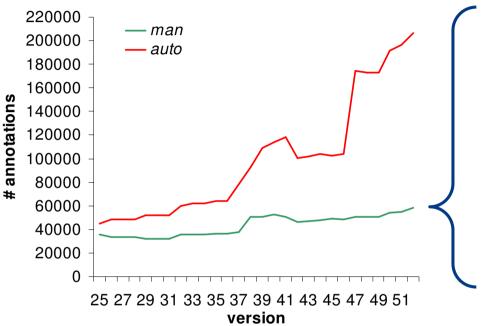
- Evolution operations for proteins, ontologies,
 - annotations
- Add
- Delete
- Change
- Propagation of evolutionary changes when ontologies and proteins evolve!

						~	
		Pro	vena	nc) L	<u> </u>	
Ensembl ID	Gene Ontology Concept ID	V ₄₈	V ₄₉	V ₅₀	٧į	ha	5 2
ENSP00000344151	GO:0015808 (L-alanine transport)	IDA	IDA	IDA	K	S	A
ENSP00000230480	GO:0005615 (extracellular space)	TAS	TAS	IDA	TA	S 1	ÍΕΑ
ENSP00000352999	GO:0006915 (apoptosis)	IDA	-	ı	-		IDA

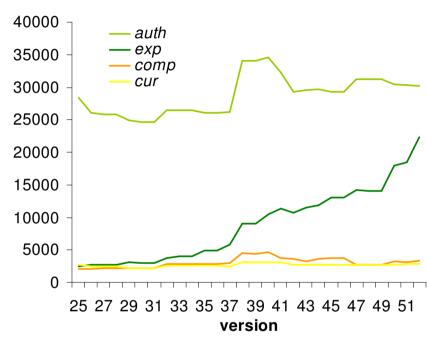
Dec 2007 - Dec 2008

Quantitative Evolution Analysis

- Two large life science sources (Mar 2004 Dec 2008)
- GO Annotations for human proteins


Swiss-Prot v₄₇-v₅₆

- Analysis of annotation evolution w.r.t.
 - > Different provenance
 - Change operations


Evolution of Annotations

Manually assigned vs. automatically assigned

- 78% of 265,000 automatically assigned
- growth_{auto} 4.6
- v₄₀ v₄₂ considerable number of deletions

"Subclasses" of manually assigned

- 22% manually assigned
- growth_{man} 1.7
 - growth_{exp} 8.9
 - o growth_{auth} 1.1

Evolution Operations

	Add		Cha	nge	Delete		
exp	25,979	6.6%	5,826	12.2%	7,575	3.6%	
auth	34,046	8.7%	16,381	34.3%	29,148	14.0%	
cur	6,362	1.6%	300	0.6%	6,318	3.0%	
comp	6,734	1.7%	5,720	12.0%	4,362	2.1%	
auto	316,979	80.9%	18,344	38.4%	157,632	75.6%	
obs	1,826	0.5%	1,234	2.6%	3,550	1.7%	
sum	391,926	(60%)	47,805	5 (8%)	208,585	5 (32%)	

>80% of all additions are auto annotations

Changes (8%) mainly auth and auto

Deletions (32%) mainly *auto* annotations

> Instabilities for auth and auto

Provenance Changes

How many annotations changed
 from one provenance type to another?

from / to	exp	auth	cur	comp	auto	obs	Sum	
exp	896	413	11	1,259	2,966	3	5,548	13%
auth	1592	798	73	1,038	11,901	23	15,425	35%
cur	21	27	0	16	182	0	246	1%
comp	1,280	1,206	26	0	3,101	0	5,613	13%
auto	3,311	10,169	228	2,329	0	116	16,153	37%
obs	79	391	9	12	725	0	1,216	3%
Sum	7,179	13,004	347	4,654	18,875	142	44,20	11
	16%	29%	1%	11%	43%	0%	44,20	<i>,</i> ,

- EC changes predominantly between auth and auto (in both directions)
- No obvious trend for the rest
- > Due to vast amount of *auto* annotations

Assessing Annotation Quality

Seen so far

- Most annotation changes are additions of new annotations
- > Also many deletions and changes
- > Instabilities for auto and auth annotations

Idea

 Assessing the quality of annotations based on their <u>history</u> and occurred <u>changes</u> (stability)

Aim

Filtering annotations w.r.t. different quality criteria

Stability Measures

• Existence stability a_{age} age of annotation (in #versions) $a_{present}$ presence within a_{age}

$$stab_{exis}(a) = a_{present} / a_{age}$$

• Quality stability $a_{changed}$ # provenance changes $a_{unchanged}$ # unchanged provenance

$$stab_{qual}(a) = a_{unchanged} / (a_{unchanged} + a_{changed})$$

Combined stability

$$stab_{comb}(a) = min (stab_{qual}(a), stab_{exis}(a))$$

V ₀	V ₁	V ₂	V ₃	V 4	a _{age}	stab _{exis}	stab _{qual}	stab comb
q_1	q ₁	q ₁	q ₁	(i_1,c_1,q_1)	5	5/5=1	4/(4+0)=1	1
q_1			q ₁	(i_2,c_2,q_1)	5	3/5=0.6	2/(2+0)=1	0.6
	q_2	q ₂	q ₁	(i 3, c 3, q 3)	4	4/4=1	1/(1+2)=0.33	0.33

Evaluation Scenario

 All currently available annotations for human proteins within the last three years

Swiss-Prot v₄₇-v₅₆

- Quality / classification criteria:
 - exp, auth, cur, comp, auto Provenance
 - *old* (> 1.5 years) Age

middle (0.5 to 1.5 years) novel (< 0.5 years)

Stability stable (stab ≥ 0.9) unstable (stab < 0.9)

Age Analysis

	old	middle	novel				
exp	10,114	3,387	8,808				
auth	23,445	4,253	2,492				
cur	253	67	157				
comp	1,913	477	942				
auto	92,474	63,954	49,909	\			
sum	128,199	72,138	62,308	\			
49% ol	d		Novel, m	- nanua			
annotations a annotations a							

predominantly exp

 Novel and middle aged annotations rarely classified as unstable (results see paper)

Stability Analysis

	stab _{exis}	stab _{qual}	stab _{comb}
evn	21,659	20,486	20,122
exp	650	1,880	2,187
auth	29,157	26,862	26,067
autii	1,033	3,116	4,123
CUL	462	399	393
cur	15	78	84
comp	3,127	2,409	2,317
comp	205	1,078	1,015
auto	183,127	201,968	179,490
auto	23,210	4,369	26,847
CUM	237,532	252,124	228,389
sum	25,113	10,521	34,256

stable unstable

High share of temporal absence

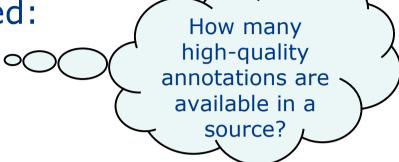
13% unstable, mainly *auto* (80%) and some *auth* (12%)

Use – Quality Analysis

Protein ID	GO Concept ID	Provenance	Age in Years	stab _{exis}	stab _{qual}	$stab_{comb}$	
ENSP00000344151	GO:0015808	ovn	3	1	1	1	
ENSP00000344131	(L-alanine transport)	exp	ر ر	1	1	1	
ENSP00000230480	GO:0005615	outo	2.5	1	0.462	0.462	
	(extracellular space)	auto	2.5			0.402	
ENSP00000352999	GO:0006915	ovn	2	0.824	1	0.824	
ENSP00000352999	(apoptosis)	exp	3	0.824	I	0.824	

 Different criteria to assess the quality of annotations w.r.t. provenance, stability, ...

 Filter less/more reliable annotations (e.g. stable, old, manually assigned) How was the annotation created?


How reliable is the annotation?

21/23

Use - Quality Analysis

• Stable, old, manually assigned:

In Ensembl about 30,000 (11%)

- Criteria selection is highly dependent on application!
- Annotation instability is not necessarily a negative aspect
- Alternative interpretation

novel or unstable annotations (in Ensembl 96,000; 37%) are of special research interest / significant biological findings

Which

Conclusion and Future Work

- Generic approach to estimate the quality of ontology-based annotations by taking their evolution history into account
- Evaluation in two large life sciences sources
 - → Instabilities for *auth* or *auto* annotations
- Different quality criteria: provenance, age, and stability to classify annotations
- Investigate other quality aspects
- Explore the impact of unstable annotations on dependent applications