Block-based Load Balancing for Entity Resolution with MapReduce

Lars Kolb, Andreas Thor, Erhard Rahm

Database Group, University of Leipzig http://dbs.uni-leipzig.de

Motivation

Entity Resolution

- Task of identifying entities referring to the same real-world object
- Application of similarity measures on pairs of input entities
 - Evaluation of Cartesian product leads to complexity of O(n²)
 - Based on entity signatures (blocking keys), blocking techniques semantically group similar entities in blocks and restrict matching to entities of the same block

Basic approach

- Map determine blocking key for every input entity and output (blockkey, entity) pair
- Part partitioning by blocking key and block-wise redistribution to r reduce tasks
- Reduce matching of entities of the same block

Goals

- Parallelization of time-intensive Blocking-based Entity Resolution with MapReduce
- Load balancing mechanism to evenly utilize available compute capacity ensuring effectiveness and scalability

Load Balancing – Overview

Idea

- ER processing in two MR jobs based on the same partitioning of the input data
 - Analysis job computation of the BDM that specifies the number of entity pairs per block separated by input partitions
 - 2. Match job utilization of the BDM for load balancing strategies (e.g. BlockSplit) during the map phase & matching of entities in reduce phase

BlockSplit

- Generation of match tasks per block & distribution among r reduce tasks
- Large block Φ_k is split according to the input partitioning into m sub-blocks
 - m match tasks k.i for matching all entities of ith sub-block
 - m(m-1)/2 match tasks $k.i \times j$ that match Cartesian product of sub-blocks i and j
- Small block Φ_k is processed within single match task k. *
- Greedy load balancing -- Sorting of match tasks in descending order by their size & assignment to fewest loaded reduce task (ignoring empty match tasks)

Example without Load Balancing

Basic approach (m=2 input partitions/map tasks, r=3 reduce tasks)

Problem

- Susceptible to severe load imbalances due to skewed block sizes
- Execution time dominated by a few tasks that process the largest block
- Large blocks prevent utilization of more than a few nodes

Example with Load Balancing (BlockSplit)

Analysis job

- Average workload per reduce task= 20/3= 6.6
- Large block Φ_3 (#P=10 > 6.6) split in m=2 sub-blocks
- $\Phi_{3.0}$, $\Phi_{3.1}$ → match tasks 3.0x1, 3.0, 3.1

2 sub-blocks		0.*	3.0x1	2.*	3.1	1.*	3.0
	#Comparisons	6	6	3	3	1	1
	Reduce task	0	1	2	2	0	1

match tasks

Match job

- Composite keys reduceTask.block.split
- Replication of entities by map
- part(reduceTask.block.split)= reduceTask

Experimental Results (n=#dual core VMs, m=#map tasks, r=#reduce tasks)

Robustness against data skew

- 100 blocks size of kth block is proportional to e^{-s'k}
- 114,000 entities, n=10, m=20, r=100

BlockSplit - Basic 225 <u>د</u> 200 175 150 125 per 10^4 100 75 50 0.2 0.8 0.4 0.6 0.1 0.3 0.5 data skew factor (s)

Scalability

- 114,000 entities \rightarrow 3·10⁸ comparisons
- $n \in [1,100], m= 2 \cdot n, r= 10 \cdot n$

Related work

- L. Kolb, A. Thor, and E. Rahm. Parallel Sorted Neighborhood Blocking with MapReduce. BTW, 2011
- L. Kolb, A. Thor, and E. Rahm. Multi-pass Sorted Neighborhood Blocking with MapReduce. CSRD, 2011
- L. Kolb, H. Köpcke, A. Thor, and E. Rahm.
 Learning-based Entity Resolution with MapReduce. CloudDB, 2011
- L. Kolb, A. Thor, and E. Rahm. Load Balancing for MapReduce-based Entity Resolution. ICDE, 2012 (to appear)