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ABSTRACT

Motivation: Ontologies are used in the annotation and analysis of

biological data. As knowledge accumulates, ontologies and annota-

tion undergo constant modifications to reflect this new knowledge.

These modifications may influence the results of statistical applica-

tions such as functional enrichment analyses that describe experimen-

tal data in terms of ontological groupings. Here, we investigate to what

degree modifications of the Gene Ontology (GO) impact these statis-

tical analyses for both experimental and simulated data. The analysis

is based on new measures for the stability of result sets and considers

different ontology and annotation changes.

Results: Our results show that past changes in the GO are

non-uniformly distributed over different branches of the ontology.

Considering the semantic relatedness of significant categories in ana-

lysis results allows a more realistic stability assessment for functional

enrichment studies. We observe that the results of term-enrichment

analyses tend to be surprisingly stable despite changes in ontology

and annotation.
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1 INTRODUCTION

Ontologies are increasingly used in the life sciences (Bodenreider

and Stevens, 2006; Lambrix et al., 2007). They provide a uniform

vocabulary to describe and structure a domain of interest. As a

prime example, the Gene Ontology (GO) Consortium (2008)

contains knowledge about biological processes (BPs), molecular

functions (MFs) and cellular components (CCs). The categories

of GO are presented as a directed acyclic graph (DAG), with the

edges representing relationships between the categories.

Higher-level categories represent more abstract descriptions

and encompass all-child categories. These categories are used

to semantically describe genes and gene products (Thomas

et al. 2007). Genes are therefore described by the particular

category to which they are annotated and, by extension, by

all-parent categories that give a more abstract description.

Applications that perform functional enrichment analysis of

gene sets take advantage of this property to identify more general

categories that contain significantly more signal than expected at

random (Tilford and Siemers, 2009).

Ongoing scientific research provides new domain knowledge

that needs to be incorporated into ontologies and annotations. In

the case of GO, these changes are incorporated on a regular basis

with regular public releases (Gene Ontology Consortium, 2008;

Leonelli et al., 2011). This ontology evolution has been previ-

ously analyzed (Hartung et al., 2008; Park et al., 2008; Pesquita

and Couto, 2011) and yielded insights into the differences be-

tween ontology versions (Noy and Musen, 2002; Hartung et al.,

2012b). Typical ontology changes include the addition of new

categories and relationships as well as the revision of the existing

structure (Hartung et al., 2012b, 2008). These ontological modi-

fications can trigger changes in the annotation (Gross et al.,

2009), e.g. when a category is removed, the annotations need

to be moved or deleted. Further, annotations may be edited to

reflect new knowledge or to eliminate inconsistencies (Dolan

et al. 2005).
The GO has evolved substantially since its inception in 2000.

Its three sub-ontologies evolved at different rates and in different

ways. Between 2007 and 2010, BP increased by about 70%,

compared with CC (�40%) and MF (�20%) (see

Supplementary Table S1). Applying the method described in

Hartung et al. (2010), we can identify how much different

parts of GO have evolved by aggregating the change intensity

in subtrees. Figure 1 illustrates that different subsections of the

GO-MF evolve differently. The non-uniform distribution of

changes may have an effect on functional enrichment analyses.
The aforementioned studies only considered changes in the

ontology while neglecting the potential effects on downstream

analyses; for example, how these changes may lead to different

results in functional enrichment analyses. While it is rather ob-

vious that the high degree of occurred changes in GO and its

annotations will impact analysis results, it is still unknown

whether earlier findings are significantly affected or even invali-

dated. The impact of ontology changes on functional enrichment

analyses may depend on where the changes are located in the

ontology and what kind of changes dominate. For example, add-

itions of categories at the leaf level might be less critical than

structural revisions within the ontology.
We provide a method to test to what degree changes of GO

and GO annotations (GOAs) may affect functional enrichment

analyses. We demonstrate the applicability and usefulness of our

approach by analyzing two real-world experimental datasets as

well as 50 random datasets. For the experimental datasets, we

provide an in-depth study of the underlying changes and their

impact on the analysis results. The presented analysis is inform-

ative for both ontology curators and users of functional enrich-

ment methods.*To whom correspondence should be addressed.

� The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2671

http://bioinformatics.oxfordjournals.org/


2 METHODS

2.1 Ontology and annotation model

For our study, we use the GO, which is represented as a DAG, in which

categories are linked by directed edges representing the relationships.

Each category c has a unique identifier (e.g. ‘blood coagulation’ has

the identifier GO:0007596). Various annotation sets A are associated

with the GO. We use the GOA (Barrell et al., 2009). Annotations to

one category (A(c)) include annotations to c and to all its descendant

categories (subgraph of c). The evidence supporting the annotation of a

gene to a category is represented as an evidence code, which can be used

to assess the origin and likely the quality of an annotation, e.g. experi-

mentally verified or automatically generated.

Our evaluation requires consideration of multiple versions of ontolo-

gies and annotation sets. New versions always supersede the information

of older versions. Furthermore, an annotation set is always associated

with a particular ontology version. We denote an ontology version as Ov

and an annotation version as Av, where v stands for the date of release.

2.2 Ontology change detection

To understand the evolution of ontologies, we use a previously published

diff algorithm (available in the CODEX web tool (Hartung et al., 2012a))

to identify the changes that occurred between two versions of an ontol-

ogy. The algorithm (Hartung et al., 2012b) uses a set of rules to first

identify basic changes (insert/update/delete) that are then aggregated into

a smaller set of more complex (semantic) changes, such as merge, split or

changes of entire subgraphs. The following ontology changes are relevant

for our study:

� addC – addition of a category

� toObsolete – mark a category as obsolete

� merge – merge of two or more categories into one category

� split – split one category into two or more categories

� substitute – substitute one category by another

� addR/delR – addition/deletion of a relationship between two categories

� move – move a category from one parent to another parent category.

2.3 Term enrichment using FUNC

We use the program FUNC (Prüfer et al., 2007) to carry out the func-

tional enrichment analysis. FUNC tests each category of the input ontol-

ogy for significance and then carries out randomizations to correct for

multiple testing. For our further analysis, we consider the family-wise

error rate corrected P-values associated with each category.

2.4 Stability measures

We propose two kinds of stability measures to assess the impact of ontol-

ogy and annotation changes on the experimental results set of a func-

tional enrichment analysis. For this purpose, we consider a fixed set of

genes, and we compute experimental result set (ER) for different points in

time with freely chosen ontology and annotation versions. We will use the

example result sets displayed in Figure 2 to illustrate our stability

measures.

2.4.1 Basic stability measure For our measures, we use the fol-

lowing cardinalities for result sets ERi and ERj produced with different

ontology or annotation versions:

ERij j, ERj

�
�

�
� – number of categories in ERi and ERj

ERi \ ERj

�
�

�
� – number of overlapping categories between ERi and ERj

ERi n ERj

�
�

�
� – number of categories only in ERi but not in ERj

ERj n ERi

�
�

�
� – number of categories only in ERj but not in ERi:

Note that categories are different if their unique identifier (accession)

differs. For determining the overlap, we count categories with identical

accessions in both ERi and ERj:
The key idea for assessing the basic stability of a result set is the fol-

lowing. A result set is considered stable in comparison with an older set if

both sets share all categories and no set has unique categories. With fewer

categories shared, the measure decreases to indicate instability. Based on

the common set similarity measure dice, we can compute the basic result

set stability as follows:

RSstabbasicðERi,ERjÞ ¼
2 � ERi \ ERj

�
�

�
�

ERij j þ ERj

�
�

�
�
:

Fig. 1. Evolution of slim terms in GO molecular functions between 2007 and 2010 (only partially shown, see Supplementary Figures 1–3 for BP, CC and

MF visualization). We computed evolution intensities for slim terms by propagating changes from slim-term subtrees (Hartung et al. 2010). Colors

denote evolution intensities of the slim terms. Non-slim term categories on the path to the root are coloured white. The graphic was produced using the

visualization tool of Amigo (Carbon et al., 2009)
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The stability returns a value between 0 and 1, whereby 0 denotes

complete instability between the two result sets (no overlapping cate-

gories). A stability of 1 means that two considered result sets completely

overlap. For instance, the example shown in Figure 2 results in a stability

of 0.57 since ERi (ERj) contains eight (six) categories of which four

overlap.

We use an analogous measure to determine the stability between an-

notation versions (Astab). For this, we consider the whole annotation set

A or annotations to a specific category A(c). We calculate the set of

annotations that are identical between the two versions. This value is

then normalized by the total number of annotations. The calculation of

the stability measure for A (and analogous for A(c)) is thus identical to

the stability between result sets:

AstabðAi,AjÞ ¼
2 � Ai \ Aj

�
�

�
�

Aij j þ Aj

�
�
�
�
:

While there are alternative set similarity measures, such as Cosine or

Jaccard, we consider dice as a suitable approach. It corresponds to the

harmonic mean, and we compare sets of similar size. According to

Manning et al. (1999), the Jaccard and Cosine measures produce slightly

different values than dice, especially in case of low set overlap. Lin (1998)

proposes a more general measure based on information theory, taking

probabilities instead of set overlap into account. This approach is par-

ticularly suited for the evaluation of term-enrichment tools, and we con-

sider this a topic for future work.

2.4.2 Region stability measure The basic stability measure

evaluates the overlap of categories in the result sets without considering

the semantic relatedness of the categories, i.e. it treats them as independ-

ent from each other. This may result in an apparent instability even when

differing categories are semantically related. We therefore generalize our

model to include structural similarity. We first enhance the result sets by

grouping together semantically related categories within so-called cat-

egory regions (CRs). We then define the stability with respect to the

CRs of the result sets. The basic model without grouping remains valid

as a special case of the region-based approach.

Semantic grouping of ER categories: We base the semantic grouping

of categories in the experimental result sets on the distance within the

ontology. This takes advantage of the fact that related categories tend to

be in close proximity, i.e. they are either directly connected by an ontol-

ogy relationship or only a few relationship ‘edges’ apart. We control the

grouping by a distance parameter d; the base case without grouping cor-

responds to d ¼ 0. For d40, we recursively group together all categories

that are connected by�d edges (see Supplementary Algorithm 1). For the

example shown in Figure 2, we obtain for d ¼ 1 three regions in ERi and

four regions in ERj, e.g. in ERj, we group c6 and c13 into one region. For

d ¼ 2, the number of regions is reduced to two in ERi and three in ERj,

e.g. c14 and c17 are grouped together with c6 and c13 in ERj:

Alternative methods exist to group categories in the result sets by

applying different semantic similarity measures (e.g. Pesquita et al.

2009; Wang et al. 2007) or classification algorithms (e.g. Pandey et al.

2009). Our approach makes use of semantic similarity based on ontology

structure and is simple to apply. The approach is also in agreement with

term-enrichment approaches such as FUNC that determine the signifi-

cance of categories based on the ontological structure that try to restrict

significant categories to few areas within an ontology.

Determining region stability: The semantic grouping of categories

allows us to determine the stability of results sets based on their CRs

and to assume stability as long as the same or at least overlapping regions

are retained in the result sets. We therefore determine the number of

regions in ERi having an overlap with regions in ERj and vice versa

(see Supplementary Algorithm 3). We consider two regions as overlap-

ping if they share at least one category. We denote the overlapping re-

gions in ERi with CRo
i and in ERj with CRo

j , respectively.

We can now use the information about overlapping regions to com-

pute the region stability as follows:

RSstabregionðCRi,CRjÞ ¼
CRo

i

�
�

�
�þ CRo

j

�
�
�

�
�
�

CRij j þ CRj

�
�

�
�
:

The stability values are, as before, distributed between 0 and 1; for

d¼ 0 (no grouping), the region stability equals the basic stability. In

Figure 2, the region stability is 0.57 for d¼ 0, 0.71 for d¼ 1 and even

0.8 for d¼ 2. Increasing the distance leads to fewer but larger regions that

more likely overlap with the regions of updated result sets.

Non-overlapping regions indicate the addition or removal of larger

areas in the ontology and, thus, more significant changes than individual

category changes quantified with the basic stability measure.

2.5 Datasets

We re-analyzed two datasets that were first tested in 2007 (Kosiol et al.,

2008). The authors performed functional enrichment analyses of genes

that show signals of positive selection in primates and rodents. We repeat

the analyses using newer versions of ontology and annotation.

We consider yearly versions between 2003 and 2010, i.e. eight GOA

versions (8, 17, 27, 38, 47, 59, 70, 81) and the corresponding GO versions

(01-2003, 02-2004, 01-2005, 01-2006, 01-2007, 01-2008, 02-2009, 01-2010).

All newer and older versions are compared with the version used in the

original publication (GOA47 and GO01�2007). For testing, we used the

Wilcoxon rank test with 10 000 random sets and a cutoff of at least 20

genes per category. A significant category has to have a P-value that does

not exceed a value of 0.05.

To test whether the observations from the real datasets apply gener-

ally, we generated 50 datasets, randomly seeding significant categories.

For this, a set of categories is chosen using a fixed first ontology version

and marked as significant by choosing a higher ratio of genes that are

Fig. 2. Stability measures. Colored nodes denote significant result set categories. We consider two versions i and j of the result set ER (for clarity with

stable ontology structure). Yellow categories are significant in both result sets ERi and ERj, red (green) categories are only significant in ERi (ERj).

Stability is computed for CRs grouped using distance d¼ 0. . .2. For d¼ 0, each concept is considered as a region (yellow concepts overlap). For d¼ 1

(d¼ 2), overlapping CRs are connected by a dashed black (continuous grey) line
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marked as significant. Then, this simulated dataset can be tested using a

different GO version. We generate datasets with the GO versions from

2007 and 2010. We then test the 2007 dataset with the 2010 version (Task

A) and vice versa (Task B).

3 RESULTS AND DISCUSSION

Between 2003 and 2010, GO grew by a factor of 2.4. Similarly,

the number of input annotations increased by factor 2.7 for

mouse and human (see Supplementary Table S2). However,

some annotations were also removed. A comparison of whole

annotation sets of 2007 and 2010 shows substantial instabilities

[AstabðA2007,A2010Þ ¼ 0:7], i.e. every third annotation was af-

fected by a change. To understand the impact of ontology and

annotation evolution on term-enrichment results, we measure

the stability for two real-world datasets (primate and rodent

dataset) at different time points. We quantify changes in result

sets using our basic stability measure and analyze causes for

changes using Astab and diff. To identify crucial changes in

the results, we applied our region-stability measure. We analyzed

50 random datasets to test whether our observations are

generalizable.

3.1 Primate and rodent datasets

3.1.1 Basic stability We computed result sets for yearly ver-
sions between 2003 and 2010 for the primate (Fig. 3a) and rodent

datasets (Fig. 3b). We compared the result sets of each version

(ERcomp) against the reference version ERref (from 2007) by com-

puting the overlap and difference of significant categories. The

primate result set (Fig. 3a) contains 19 significant categories in

2007. In general, ontology versions that are closer in time tend to

share a higher fraction of significant categories. Since 2008, the

results are more stable. A substantial fraction of significant cate-

gories are detected in 2007 and 2010, as evidenced by a stability

measure (RSstabbasic) of 0.81.

The rodent result set (Fig. 3b) contains 23 significant cate-

gories in 2007. The preceding (2006) and successive (2008) ver-

sion overlap by only 8 and 15 categories, respectively. Using the

2010 version, only eight categories of the reference result set re-

mained, and no new categories were detected as significant.

Overall, the results set stability (0.52) is lower compared with

the primate dataset.

Figure 3c shows a comparison of the result set stability

RSstabbasic between 2007 and 2010 for both the datasets.

To identify the main cause for the changes observed between

significant categories found in different years, we tested the re-

sults changing ontology and annotation independently.

Changing only the ontology affected both datasets (rodents

0.84, primates 0.7). Changing the annotation version (Aw) but

fixing the ontology only marginally affected the primate result set

(0.97) while it substantially reduced the stability of the rodent

result set (0.5). This shows that both ontology and annotation

evolution have an impact on the results of term-enrichment

analyses.
We explore the causes for the differences in significant cate-

gories between 2007 and 2010 (Fig. 4). We used diff to identify

ontology changes that have caused changes in ER. Moreover, we

analyzed the annotation stability (Astab) of all significant result

categories c to see whether changes in annotations predominate

in some cases.
First, there were three new significant categories for primates

in 2010. Two categories (‘molecular transducer activity’

GO:0060089, ‘system process’ GO:0003008) were added between

2007 and 2010 such that they were additionally detected in the

functional enrichment analysis. Another category (‘cognition’

GO:0050890) has been included in the result set since it received

additional annotation. On the other hand, no new categories

were detected as significant in rodents.
Several categories were no longer significant in both rodent

and primate datasets. Three of the 15 non-significant categories

in the rodent dataset are directly affected by an ontology evolu-

tion operation (merge) while most other categories that became

non-significant show a strongly reduced annotation stability of

less than 0.7. For instance, for ‘regulation of immune system

process’ (‘GO:0002682’) only 22 out of 143 annotations in

2010 overlap to the annotation set of 2007 (Astab � 0:3). This

is in contrast to the primate dataset, where three of the categories

were affected by ontology evolution operations (merge, substi-

tute, toObsolete) while only one category shows a large change

in annotation.
We further observed strong structural changes in the

direct semantic context of significant categories:

addRj j ¼ 31ð48Þ, delRj j ¼ 10ð11Þ, movej j ¼ 102ð57Þ for primates

(rodents) (see Supplementary Fig. S5). Such structural

Fig. 3. Evolution of ERs between 2003 and 2010 for primates (a) and rodents (b). We compared the ERs for each version ERcomp against the reference

version ERref from 2007: overlapping categories (black bar), categories in ERcomp but not in ERref (light gray bar), categories in ERref but not in ERcomp

(dark grey bar). (c) Basic result set stability RSstabbasic between 2007 and 2010. Different input versions: evolution of ontology and annotation versions

(change Ov and Aw), only changing the ontology version (change Ov) and only changing the annotation version (change Aw)
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modifications may influence annotation propagation. Adding or

deleting relationships to an upper category c leads to a changed

annotation set A(c) and, thus, to a reduced annotation stability

Astab and possibly to a changed significance of c. Overall, most

unaffected significant categories showed a higher annotation sta-

bility than categories that gained or lost significance.
Electronic annotation that is based on automated methods to

infer the function of genes may produce less reliable annotations

than manually curated entries. To test this hypothesis, we re-

peated our analysis of the rodent and primate datasets using

only manually curated annotation. However, because as much

as 60% of the annotation is derived from automated approaches,

the dataset is too small to draw reliable conclusions (primates

ER2007j j ¼ 4, rodents ER2007j j ¼ 9; see Supplementary Figs S6

and S7 for details).

3.1.2 Region stability Applying the CR stability measure (dis-
tance d ¼ 1) summarizes significant categories into semantically

related regions (Fig. 5). For primates, we identify four CRs. All

four regions overlap, and the contents of the regions changed

only slightly from 2007 to 2010. Considering regions instead of

single categories, we obtain perfect stability (RSstabregion ¼ 1 in-

stead of RSstabbasic ¼ 0:81). For rodents, there were four signifi-
cant CRs in 2007 (CR1,CR2,CR3,CR4) and 2010

(CR2,CR3,CR4a,CR4b) but only three of them overlapped.

One region (CR1 ‘catabolism’) lost significance, due to strong

annotation evolution (see Fig. 4). Moreover, there was one

very large region (CR4 ‘response to stimulus’), where 13 cate-

gories were no longer significant in 2010. Six remaining cate-

gories were split into two regions (CR4a ‘response to stress’,

CR4b ‘immune system process’). The rodent dataset has a CR

stability of RSstabregion ¼ ð3þ 4Þ=ð4þ 4Þ ¼ 0:875 (instead of

RSstabbasic ¼ 0:52).

Comparing CRs incorporates semantic information, which

leads to higher stability values since larger regions are con-

sidered. If the CR stability is reduced, we argue that there is a

meaningful difference in results.

With the datasets analyzed here, we see that ontology evolu-

tion operations and annotation changes can have effects on

term-enrichment analyses. There is a substantial variability be-

tween the primate and rodent datasets. While the primate results

proved to be relatively stable, we see meaningful changes for the

rodent data. The primate dataset was more influenced by ontol-

ogy changes while annotation changes had a higher impact on

the rodent dataset. Term-enrichment analysis will often yield se-

mantically related categories reducing the influence of changes in

semantically related categories. The majority of changes have no

effect on the semantic interpretation of functional enrichment

analysis, although we found some instances in which the inter-

pretation may change. We conclude that term-enrichment results

are relatively robust to ontology and annotation evolution.

3.2 Simulated datasets

We observe that several categories in the real datasets are

affected by evolution of ontology and annotation, and that

these changes lead to differences in the enrichment analysis re-

sults. To test whether the patterns we observe are generalizable,

we generated 50 datasets, randomly seeding significant cate-

gories. Repeating this generation of datasets for two versions

of the GO (2007, 2010) enables us to test to what extent differ-

ences between these two ontology versions influence enrichment

results. To distinguish semantically related categories that are

likely equally affected by changes, from semantically distinct

categories, we apply the CR stability measure with distance d¼ 1.
Table 1 shows average values over all 50 random experiments

(details in Supplementary Tables S4 and S5). Note that the

Fig. 4. Annotation stability for result set categories in ER2007 and ER2010 for (a) primates and (b) rodents. The diagrams show all significant categories

computed in 2007 and/or 2010 (x-axis). For each category, the overlap of annotations between both versions ( A2007ðcÞ \ A2010ðcÞ
�
�

�
�, black bars, y-axis),

the number of annotations in 2007 (|A2007(c)|, light gray bars, y-axis) and 2010 (|A2010(c)|, dark gray bars, y-axis) as well as the resulting annotation

stability Atab(A2007(c),A2010(c)) (black curve, z-axis) are shown. Categories in the dotted (striped) areas were only present in the analysis result of 2007

(2010). All other categories are present in both version sets. The lower boxes highlight evolution operations that happened to categories (dotted box -

information reducing/revising, striped box - added information). Result categories (including GO accessions) for both species and years are shown in

Supplementary Figure 4
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random datasets are larger and thus cover larger ontology parts,

possibly leading to a generally lower stability. When testing

changes from 2007 to 2010 (Task A), we observe on an average

nine CRs that lose significance while 19 newly significant groups

are identified. Changes from 2010 to 2007 (Task B) yield to four

CRs with lost significance and 21 newly significant regions. Note

that comparing single result categories instead of regions leads to

less compact results (e.g. 129.3 categories versus 8.9 CRs for

Task A in 2007). Moreover, using avgðRSstabregionÞ results in

higher values (�0.7) than avgðRSstabbasicÞ (�0.5 to �0.6) since

changes of semantically related categories are not considered as

really new/missing significant regions. These observations affirm

the results of the two real-world datasets.
Because we define categories as significant based on a fixed

P-value cutoff, some of the categories that lose or gain signifi-

cance may do so due to small fluctuations in P-value. To test for

the relative contribution of this effect to the observed changes,

we computed the differences of P-values between 2007 and 2010

for each significant category. Figure 6 shows the distribution of

P-value differences for lost and gained significant categories.

Most of the categories reveal only a relatively small change in

P-value (50:1), showing that most category gains and losses are

driven by small fluctuations in significance. However, some cate-

gories show substantial P-value differences, suggesting that real

structural changes in the ontology or annotation are the basis for

the change in P-value.

4 CONCLUSIONS

Enrichment analyses use ontology and annotation to detect sig-

nificantly enriched categories of genes. We studied the impact of
ontology and annotation evolution on term-enrichment analyses

by comparing term-enrichment results over different ontology

and annotation versions. We proposed different measures to
assess the stability of result sets and applied them to analyze

the impact of evolution for two real-world and 50 random
datasets.

The GO undergoes continuous changes in its structure and the
annotation due to the ongoing incorporation of new knowledge.

These changes are unequally distributed and can cluster in re-

gions representing specific topics. At the level of individual cate-
gories, the results of term-enrichment analyses can be

significantly affected by ontology and annotation evolution.
However, these changes do not necessarily change the interpret-

ation of the result since these terms are often semantically

related. This effect is captured by our CR stability measure.
The experimental evaluation showed that term-enrichment

analyses are generally robust to ontology and annotation

evolution.
Using our measures, users can identify categories that tend to

change their level of significance due to structural ontology
changes or heavily changed annotation sets. The two following

audiences can benefit from our methods and results:

Fig. 5. Category regions for primate and rodent dataset, d¼ 1

Table 1. Average results over 50 random experiments for tasks A and B

Task A Task B

avgð ERonly2007

�
�

�
�Þ 129.3 62.6

avgð CRonly2007

�
�

�
�Þ 8.9 4.2

avgð ERonly2010

�
�

�
�Þ 440.7 856.8

avgð CRonly2010

�
�

�
�Þ 18.9 21.4

avgðRSstabbasicÞ 0.625 0.519

avgðRSstabregionÞ 0.719 0.707

Average number of significant result categories ( ERj j) and more compact CRs

( CRj j) only in 2007 (missing), only in 2010 (new), avgðRSstabbasicÞ – average of

basic stability, avgðRSstabregionÞ – average of CR stability.

0
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100
120

A B A B A B A B A B A B A B A B A B A B

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1.0]

av
g(

|c
ha

ng
es

|)

| pValue2007 − pValue2010 | intervals

avg(|missing categories|)
avg(|new categories|)

Fig. 6. Average number of changed categories grouped by absolute

P-value difference ( Pvalue2007 � Pvalue2010j j) for tasks A and B
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(i) Ontology curators: For these users, it is important to de-
termine whether planned changes in the ontology or the
annotations result in a semantic change. We show here
that structural ontology changes do not necessarily imply

a semantic change of the results, and we provide stability
measures that allow testing of proposed changes in the GO
and the implications for functional enrichment analyses.

(ii) Biologists using the GO for functional enrichment ana-
lyses: For these users, it is interesting to know that enrich-
ment results may change over time due to changes in the

ontology and annotations and that interpretation of their
own results should be made with this in mind.

We already provide a tool for ontology evolution evaluation

(Hartung et al. 2012a). We plan to extend this tool to detect
annotation evolution and to incorporate the here-presented sta-
bility measures. The tool may be of particular interest for cur-
ators of ontologies to judge the potential impact of changes for

users.
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