
www.scads.de

BIG DATA INTEGRATION

AT SCADS DRESDEN/LEIPZIG

ERHARD RAHM, UNIV. LEIPZIG

Two Centers of Excellence for Big Data in Germany

 ScaDS Dresden/Leipzig

 Berlin Big Data Center (BBDC)

ScaDS Dresden/Leipzig (Competence Center for

Scalable Data Services and Solutions Dresden/Leipzig)

 scientific coordinators: Nagel (TUD), Rahm (UL)

 start: Oct. 2014

 duration: 4 years (option for 3 more years)

 initial funding: ca. 5.6 Mio. Euro

GERMAN CENTERS FOR BIG DATA

2

 Bundling and advancement of existing expertise on Big Data

 Development of Big Data Services and Solutions

 Big Data Innovations

GOALS

3

Leipzig

Dresden

FUNDED INSTITUTES

TU DresdenUniv. Leipzig

Max-Planck Institute for

Molecular Cell Biology

and Genetics

Leibniz Institute of

Ecological Urban and Regional

Development

4

 Hochschule für Telekommunikation

Leipzig

 Institut für Angewandte Informatik

e. V.

 Landesamt für Umwelt, Landwirtschaft

und Geologie

 Netzwerk Logistik Leipzig-Halle e. V.

 Sächsische Landesbibliothek – Staats-

und Universitätsbibliothek Dresden

 Scionics Computer Innovation GmbH

 Technische Universität Chemnitz

 Universitätsklinikum Carl Gustav Carus

 Avantgarde-Labs GmbH

 Data Virtuality GmbH

 E-Commerce Genossenschaft e. G.

 European Centre for Emerging

Materials and Processes Dresden

 Fraunhofer-Institut für Verkehrs- und

Infrastruktursysteme

 Fraunhofer-Institut für Werkstoff- und

Strahltechnik

 GISA GmbH

 Helmholtz-Zentrum Dresden -

Rossendorf

ASSOCIATED PARTNERS

5

GROBSTRUKTUR DES ZENTRUMS

Big Data Life Cycle Management and Workflows

Efficient Big Data Architectures

Data Quality /

Data Integration

Visual

Analytics

Knowledge

Extraktion

Life sciences

Material and Engineering sciences

Digital Humanities

Environmental / Geo sciences

Business Data

Service

center

6

 Data-intensive computing W.E. Nagel

 Data quality / Data integration E. Rahm

 Databases W. Lehner, E. Rahm

 Knowledge extraction/Data mining

C. Rother, P. Stadler, G. Heyer

 Visualization

S. Gumhold, G. Scheuermann

 Service Engineering, Infrastructure

K.-P. Fähnrich, W.E. Nagel, M. Bogdan

RESEARCH PARTNERS

7

 Life sciences G. Myers

 Material / Engineering sciences M. Gude

 Environmental / Geo sciences J. Schanze

 Digital Humanities G. Heyer

 Business Data B. Franczyk

APPLICATION CORRDINATORS

8

 ScaDS Dresden/Leipzig

 Big Data Integration

 Introduction

 Matching product offers from web shops

 DeDoop: Deduplication with Hadoop

 Privacy-preserving record linkage with PP-Join

 Cryptographic bloom filters

 Privacy-Preserving PP-Join (P4Join)

 GPU-based implementation

 Summary and outlook

 References

AGENDA

9

BIG DATA ANALYSIS PIPELINE

10

Data

integration/

annotation

Data

extraction /

cleaning

Data

aquisition

Data

analysis and

visualization

Inter-

pretation

H
e

te
ro

ge
n

ei
ty

Vo
lu

m
e

Ve
lo

ci
ty

P
ri

va
cy

H
u

m
a

n

co
lla

b
o

ra
ti

o
n

 Identification of semantically equivalent objects

 within one data source or between different sources

 Original focus on structured (relational) data, e.g. customer data

OBJECT MATCHING (DEDUPLICATION)

CID Name Street City Sex

11 Kristen Smith 2 Hurley Pl South Fork, MN 48503 0

24 Christian Smith Hurley St 2 S Fork MN 1

Cno LastName FirstName Gender Address Phone/Fax

24 Smith Christoph M 23 Harley St, Chicago IL,

60633-2394
333-222-6542 /

333-222-6599

493 Smith Kris L. F 2 Hurley Place, South Fork

MN, 48503-5998
444-555-6666

11

 Thousands of data sources (shops/merchants)

 Millions of products and

product offers

 Continous changes

 Many similar, but

different products

 Low data quality

BIG DATA INTEGRATION USE CASE
INTEGRATION OF PRODUCT OFFERS IN COMPARISON PORTAL

12

 Frequent existence of specific product codes for certain products

 Product code = manufacturer-specific identifier

 any sequence consisting of alphabetic, special, and numeric

characters split by an arbitrary number of white spaces.

 Utilize to differentiate similar but different products.

USE OF PRODUCT CODES

Hahnel HL-XF51 7.2V 680mAh for Sony NP-FF51

Canon VIXIA HF S100 Camcorder - 1080p - 8.59 MP

13

PRODUCT CODE EXTRACTION

Hahnel
HL-XF51

for
Sony

NP-FF51

Hahnel HL-XF51 7.2V 680mAh for Sony NP-FF51

7.2V
680mAh

Hahnel
HL-XF51

Sony
NP-FF51

HL-XF51

NP-FF51

Features

Tokens Filtered
Tokens

Candidates W
eb

 V
er

if
ic

at
io

n
[A-Z]{2}\-[A-Z]{2}[0-9]{2}

14

LEARNING-BASED MATCH APPROACH

Product Code
Extraction

Manufacturer
Cleaning

Automatic
Classification

Product
Offers

Training Data
Selection

Matcher
Application

Classifier
Learning

Blocking
(Manufacturer

+ Category)
Matcher

Application Classification

Classifier

Product
Match Result

 Training

 Application

 Pre-processing

15

 Blocking to reduce search space

 group similar objects within blocks based on blocking key

 restrict object matching to objects from the same block

 Parallelization

 split match computation in sub-tasks to be executed in parallel

 exploitation of Big Data infrastructures such as Hadoop

(Map/Reduce or variations)

HOW TO SPEED UP OBJECT MATCHING?

16

GENERAL OBJECT MATCHING WORKFLOW

17

S

Blocking
Similarity

Computation

Match
Classification

M

RS

R

Map Phase: Blocking Reduce Phase: Matching

G
ro

u
p

in
g

G
ro

u
p

in
g

G
ro

u
p

in
g

R
e-

Pa
rt

it
io

n
in

g

 Data skew leads to unbalanced workload

 Large blocks prevent utilization of more than a few nodes

 Deteriorates scalability and efficiency

 Unnecessary costs (you also pay for underutilized machines!)

 Key ideas for load balancing

 Additional MR job to determine blocking key distribution, i.e., number
and size of blocks (per input partition)

 Global load balancing that assigns (nearly) the same number of pairs to
reduce tasks

 Simplest approach : BlockSplit (ICDE2012)

 split large blocks into sub-blocks with multiple match tasks

 distribute the match tasks among multiple reduce tasks

LOAD BALANCING

18

 Example: 3 MP3 players + 6 cell phones 18 pairs (1 time unit)

 Parallel matching on 2 (reduce) nodes

BLOCK SPLIT: 1 SLIDE ILLUSTRATION

3 pairs

(16%)

15 pairs

(84%)

Speedup:

18/15=1.2

3

4

2

2 4

3 pairs

6 pairs

9 pairs (50%)

1 pair

8 pairs

9 pairs (50%)

Speedup: 2

naiive approach BlockSplit

19

 Evaluation on Amazon EC infrastructure using Hadoop

 Matching of 114.000 product records

BLOCK SPLIT EVALUATION: SCALABILITY

20

 Parallel execution of data integration/

match workflows with Hadoop

 Powerful library of match and blocking

techniques

 Learning-based configuration

 GUI-based workflow specification

 Automatic generation and execution of

Map/Reduce jobs on different clusters

 Automatic load balancing for optimal scalability

 Iterative computation of transitive closure (extension of MR-CC)

DEDOOP: EFFICIENT DEDUPLICATION WITH HADOOP

21

“This tool by far shows the

most mature use of

MapReduce for data

deduplication”
www.hadoopsphere.com

DEDOOP OVERVIEW

S
Blocking

Similarity
Computation

Match
Classification

M

RS

T
RS
[0,1]

Machine
Learning

R

General ER workflow

• Decision Tree
• Logistic Regression
• SVM
• …

• Standard Blocking
• Sorted Neighborhood
• PPJoin+
• …

• Threshold
• Match rules
• ML model
• …

• Edit Distance
• n-gram
• TFIDF
• …Blocking Key Generators

• Prefix
• Token-based
• …

C
o

re

Dedoop‘s general MapReduce workflow

Classifier
Training Job

Data
Analysis Job

Blocking-based Matching Job

22

 ScaDS Dresden/Leipzig

 Big Data Integration

 Introduction

 Matching product offers from web shops

 DeDoop: Deduplication with Hadoop

 Privacy-preserving record linkage with PP-Join

 Cryptographic bloom filters

 Privacy-Preserving PP-Join (P4Join)

 GPU-based implementation

 Summary and outlook

 References

AGENDA

23

 Object matching with encrypted data to preserve privacy

 data exchange / integration for person-related data

 many use cases: medicine (e.g., cancer registries), census, …

 numerous PPRL approaches (Vatsalan et al., 2013), some

requiring trustee or secure multi-party protocol

 scalability problem for large datasets (e.g., for census

purposes)

PRIVACY-PRESERVING RECORD LINKAGE

24

 effective and simple approach uses cryptographic bloom filters

(Schnell et al, 2009)

 tokenize all match-relevant attribute values, e.g. using bigrams or

trigrams

 typical attributes: first name, last name (at birth), sex, date of birth, country of

birth, place of birth

 map each token with a family of hash functions to fixed-size bit

vector (fingerprint)

 original data cannot be reconstructed

 match of bit vectors (Jaccard similarity) is good approximation of

true match result

PPRL WITH BLOOM FILTERS

25

SIMILARITY COMPUTATION - EXAMPLE

26

mas

tho hom oma mantho hom oma mas

0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h1(mas)= 3 h2(mas)= 7 h3(mas)= 11

tho

hom

oma

man

0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 0 1 1 0 1 0 0 0 0 1 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SimJaccard (r1, r2) = (r1 ᴧ r2) / (r1 ᴠ r2)

SimJaccard (r1, r2) = 7/11

0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h1(man)= 2 h2(man)= 0 h3(man)= 13

tho

hom

oma

thomanthomas

 one of the most efficient similarity join algorithms

 determine all pairs of records with simJaccard(x,y) ≥ t

 use of filter techniques to reduce search space

 length, prefix, and position filter

 relatively easy to run in parallel

 good candidate to improve scalability for PPRL

PP-JOIN: POSITION PREFIX JOIN (XIAO ET AL, 2008)

27

 matching records pairs must have similar lengths

 length / cardinality: number of tokens for strings, number of bits for

bit vectors

 Example for minimal similarity t = 0,8:

 Exclude from comparison if length of shorter record is less than t* length of

LENGTH FILTER

SimJaccard(x, y) ≥ t ⇒ |x| ≥ | y| ∗ t

| r1 | ≥ | r2 | ∗ t ? 4 ≥ 5,6 ? no

| r4| ≥ | r2 | ∗ t ? 6 ≥ 5,6 ? yes

records tokens (bigrams) length

4
7

r1=Tom
r2=Thomas

r4=Tommy 6

[_t, to, om, m_]

[_t, th, ho, om, ma, as, s_]

[_t, to, om, mm, my, y_]

28

 Similar records must have a minimal overlap α in their sets of tokens (or set bit

positions)

 Prefix filter approximates this test

 order all tokens (bit positions) for all records according to their overall frequency from

infrequent to frequent

 exclude pairs of records without any overlap in their prefixes with

 Example (t = 0.8)

PREFIX FILTER

29

prefix_length(x) = é ((1-t)∗|x|) + 1 

r2=Thomas

records sorted tokens Prefix

[ho, th, ma]

[ma, as, s_]r3=Tomas

prefix length

3

3

[ho, th, ma, as, s_, _t, om]

[ma, as, s_, to, _t, om]

[mm, my, y_, to, -t, om] [mm, my, y_]3r4=Tommy

prefix(r2) ∩ prefix(r3) ={ma}≠ {} prefix(r2) ∩ prefix(r4) = {}

prefix(r3) ∩ prefix(r4) = {}

SimJaccard(x, y) ≥ t ⇔ Overlap(x, y) ≥ α = é(
𝒕

𝟏+𝒕
∗ (|𝒙|) + |𝒚|)) 

 evaluate overlap of set positions in bit vectors

 Preprocessing phase

 determine frequency per bit positions and reorder all bit vectors according to the

overall frequency of bit positions

 determine length and prefix per bit vector

 sort all bit vectors in ascending order of their „length“ (number of set positions)

 Match phase (sequential scan)

 for each record apply length filter to determine window of relevant records to match

with

 apply prefix filter (AND operation on prefix) to exclude record pairs without prefix

overlap

 apply position filter for further savings

PRIVACY-PRESERVING PP-JOIN (P4JOIN)

30

 records (id, bit vector/ fingerprint)

 determine frequency ordering Of

P4JOIN: PREPROCESSING (1)

31

tokens (set positions)fingerprint

3 1 2 1 0 1 2 0 0 3 0 2 0 2 2 0

1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0

ID

1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

B

C

card.

8

4

7

0 2 3 6 9 11 13 14

0 1 5 9

0 2 6 9 11 13 14

frequency

1 1 1 2 2 2 2 2 3 3

1 3 5 2 6 11 13 14 0 9

Of

sort positions in ascending frequency order

(ignore unused positions)

count #occurences per index

position

 reorder fingerprints according to Of

PPPP-JOIN: PREPROCESSING (2)

32

tokens (set position)fingerprint

1 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0

ID

1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0

A

B

C

card.

8

4

7

0 2 3 6 9 11 13 14

0 1 5 9

0 2 6 9 11 13 14

sorted tokens

3 2 6 11 13 14 0 9

1 5 0 9

2 6 11 13 14 0 9

1 1 1 2 2 2 2 2 3 3

1 3 5 2 6 11 13 14 0 9

Of

reordered fingerprint

0 1 0 1 1 1 1 1 1 1 0 0 0

ID

1 0 1 0 0 0 0 0 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

A

B

C

card.

8

4

7

1 3 5 2 6 11 13 14 0 9

continue with reordered
fingerprints

 sort records by length (cardinality) and

determine prefixes

P4JOIN: PREPROCESSING (3)

prefix_length(x) = é ((1-t)∗|x|) + 1 

prefix length prefix fingerprint

1 0 1

0 0 0 1 1 1

0 1 0 1 1

reordered fingerprint

0 1 0 1 1 1 1 1 1 1 0 0 0 0

ID

1 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0 0

B

C

A

card.

8

4

7

2

3

3

33

reordered fingerprint

0 1 0 1 1 1 1 1 1 1 0 0 0

ID

1 0 1 0 0 0 0 0 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

B

C

A

card.

8

4

7

 compare records ordered by length

P4JOIN: APPLY LENGTH FILTER

34

length filter

7 * 0.8 = 5.6

when reading record C it is observed that it does not meet the length filter w.r.t. B

-> record B (|B|= 4) can be excluded from all further comparisons

record A still needs to be considered w.r.t. C due to similar length

length filter

8 * 0.8 = 6.4

reordered fingerprint

0 1 0 1 1 1 1 1 1 1 0 0 0

ID

1 0 1 0 0 0 0 0 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

B

C

A

card.

8

4

7

 only records with overlapping prefix need to be matched

 AND operation on prefix fingerprints

P4JOIN: PREFIX FILTER

35

0 0 0 1 1 1 prefix fingerprint

1 0 1

0 0 0 1 1 1

0 1 0 1 1

reordered fingerprint

0 1 0 1 1 1 1 1 1 1 0 0 0 0

ID

1 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0 0

B

C

A

card.

8

4

7

AND operation on prefixes shows non-zero result for C and C so that these records still need

to be considered for matching

 improvement of prefix filter to avoid matches even for overlapping

prefixes

 estimate maximally possible overlap and checking whether it is below the minimal

overlap α to meet threshold t

 original position filter considers the position of the last common prefix token

 revised position filter

 record x, prefix length 9

 record y, prefix length 8

 highest prefix position (here fourth pos. in x) limits possible overlap with

other record: the third position in y prefix cannot have an overlap with x

 maximal possible overlap = #shared prefix tokens (2) + min (9-3, 8-3)= 7

< minimal overlap α = 8

P4JOIN: POSITION FILTER

36

1 1 0 1

1 1 1

 comparison between NestedLoop, P4Join, MultiBitTree

 MultiBitTree: best filter approach in previous work by Schnell

 applies length filter and organizes fingerprints within a binary tree so

that fingerprints with the same set bits are grouped within sub-trees

 can be used to filter out many fingerprints from comparison

 two input datasets R, S

 determined with FEBRL data generator

N=[100.000, 200.000, …, 500.000]. |R|=1/5⋅N, |S|=4/5⋅N

 bit vector length: 1000

 similarity threshold 0.8

EVALUATION

37

 runtime in minutes on standard PC

 similar results for P4Join and Multibit Tree

 relatively small improvements compared to NestedLoop

EVALUATION RESULTS

38

Approach
Dataset size N

100.000 200.000 300.000 400.000 500.000

NestedLoop 6,10 27,68 66,07 122,02 194,77

MultiBitTree 4,68 18,95 40,63 78,23 119,73

P4 Length filter only 3,38 20,53 46,48 88,33 140,73

P4 Length+Prefix 3,77 22,98 52,95 99,72 159,22

P4 Length+Prefix+Position 2,25 15,50 40,05 77,80 125,52

 Operations on bit vectors easy to compute on GPUs

 Length and prefix filters

 Jaccard similarity

 Frameworks CUDA und OpenCL support data-parallel

execution of general computations on GPUs

 program („kernel“) written in C dialect

 limited to base data types (float, long, int, short, arrays)

 no dynamic memory allocation (programmer controls memory

management)

 important to minimize data transfer between main memory and

GPU memory

GPU-BASED PPRL

39

 partition inputs R and S (fingerprints sorted by length) into equally-

sized partitions that fit into GPU memory

 generate match tasks per pair of partition

 only transfer to GPU if length intervals per partition meet length

filter

 optional use of CPU thread to additionally match on CPU

EXECUTION SCHEME

𝐒

S0 S1 S2 S3 S4

𝐑

R0

R1

R2

R3

GPU thread

CPU thread(s)

Match task

m
at

ch
e

s

MR0,S3

GPU memory

Replace
S3 with S4

Read
MR0,S4

Kernel0

Kernel|R0|-1

…

GPU

𝐫0-S4

𝐫|R0|-1-S4

b
it

s

R0 S4

b
it

s

R0 S3

change S3 with S4

40

b
it

s
ca

rd
p

re
fi

x

b
it

s
ca

rd
p

re
fi

x b
it

s

b
it

s
ca

rd
p

re
fi

x

b
it

s
ca

rd
p

re
fi

x

Main memory (host)

100.000 200.000 300.000 400.000 500.000

GForce GT 610 0,33 1,32 2,95 5,23 8,15

GeForce GT 540M 0,28 1,08 2,41 4,28 6,67

GPU-BASED EVALUATION RESULTS

41

GeForce GT 610
• 48 Cuda Cores@810MHz
• 1GB
• 35€

GeForce GT 540M
• 96 Cuda Cores@672MHz
• 1GB

 improvements by up to a factor of 20, despite low-profile graphic cards

 still non-linear increase in execution time with growing data volume

 ScaDS Dresden/Leipzig

 Big Data Integration

 Introduction

 Matching product offers from web shops

 DeDoop: Deduplication with Hadoop

 Privacy-preserving record linkage with PP-Join

 Cryptographic bloom filters

 Privacy-Preserving PP-Join (P4Join)

 GPU-based implementation

 Summary and outlook

 References

AGENDA

42

 ScaDS Dresden/Leipzig

 Research focus on data integration, knowledge extraction, visual

analytics

 broad application areas (scientific + business-related)

 solution classes for applications with similar requirements

 Big Data Integration

 Big data poses new requirements for data integration (variety,

volume, velocity, veracity)

 comprehensive data preprocessinga and cleaning

 Hadoop-based approaches for improved scalability, e.g. Dedoop

 Usabilty: machine-learning approaches, GUI, monitoring …

SUMMARY

43

 Privacy-Preserving Record Linkage

 increasingly important tp protect personal information

 Scalability issues for Big Data

 Bloom filters allow simple, effective and relatively efficient match
approach

 still scalability issues for Big Data -> reduce search space and apply
parallel processing

 Privacy-preserving PP-Join (P4JOIN)

 relatively easy adoption for bit vectors with improved position filter

 comparable performance to Multibit trees but easier to parallelize

 GPU version achieves significant speedup

 further improvements needed to reduce quadratic complexity

SUMMARY (2)

44

 Parallel execution of more diverse data integration workflows for text

data, image data, sensor data, etc.

 Learning-based configuration to minimize manual effort (active

learning, crowd-sourcing)

 Holistic integration of many data sources (data + metadata)

 Clustering across many sources

 N-way merging of related ontologies (e.g. product taxonomies)

 Realtime data enrichment and integration for sensor data

 Improved privacy-preserving record linkage

OUTLOOK

45

 H. Köpcke, A. Thor, S. Thomas, E. Rahm: Tailoring entity resolution for matching product offers. Proc. EDBT 2012:

545-550

 L. Kolb, E. Rahm: Parallel Entity Resolution with Dedoop. Datenbank-Spektrum 13(1): 23-32 (2013)

 L. Kolb, A. Thor, E. Rahm: Dedoop: Efficient Deduplication with Hadoop. PVLDB 5(12), 2012

 L. Kolb, A. Thor, E. Rahm: Load Balancing for MapReduce-based Entity Resolution. ICDE 2012: 618-629

 L. Kolb, Z. Sehili, E. Rahm: Iterative Computation of Connected Graph Components with MapReduce.

Datenbank-Spektrum 14(2): 107-117 (2014)

 E. Rahm, W.E. Nagel: ScaDS Dresden/Leipzig: Ein serviceorientiertes Kompetenzzentrum für Big Data. Proc. GI-

Jahrestagung 2014: 717

 R.Schnell, T. Bachteler, J. Reiher: Privacy-preserving record linkage using Bloom filters. BMC Med. Inf. &

Decision Making 9: 41 (2009)

 Z. Sehili, L. Kolb, C. Borgs, R. Schnell, E. Rahm: Privacy Preserving Record Linkage with PPJoin. Proc. BTW Conf.

2015 (to appear)

 D. Vatsalan, P. Christen, V. S. Verykios: A taxonomy of privacy-preserving record linkage techniques. Information

Syst. 38(6): 946-969 (2013)

 C. Xiao, W. Wang, X. Lin, J.X. Yu: Efficient Similarity Joins for Near Duplicate Detection. Proc. WWW 2008

REFERENCES

46

