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 Founded in 1409

 Now about 30.000 students in 14 faculties

 Computer science

 13 professorships and 2 junior professors

 150 PhD students and postdocs (120 by third party funding)

UNIVERSITY OF LEIPZIG
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Two Centers of Excellence for Big Data in Germany 

 ScaDS Dresden/Leipzig

 Berlin Big Data Center (BBDC)

ScaDS Dresden/Leipzig (Competence Center for

Scalable Data Services and Solutions Dresden/Leipzig)

 scientific coordinators: Nagel (TUD), Rahm (UL)

 start: Oct. 2014 

 duration: 4 years (option for 3 more years)

 initial funding: ca. 5.6 Mio. Euro

GERMAN CENTERS FOR BIG DATA
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 Bundling and advancement of existing expertise on Big Data

 Development of Big Data Services  and Solutions

 Big Data Innovations

GOALS
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FUNDED INSTITUTES

TU DresdenUniv. Leipzig

Max-Planck Institute for

Molecular Cell Biology 

and Genetics

Leibniz Institute of 

Ecological Urban and Regional 

Development
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 Hochschule für Telekommunikation 

Leipzig 

 Institut für Angewandte Informatik 

e. V. 

 Landesamt für Umwelt, Landwirtschaft 

und Geologie  

 Netzwerk Logistik Leipzig-Halle e. V.  

 Sächsische Landesbibliothek – Staats-

und Universitätsbibliothek Dresden  

 Scionics Computer Innovation GmbH  

 Technische Universität Chemnitz  

 Universitätsklinikum Carl Gustav Carus  

 Avantgarde-Labs GmbH 

 Data Virtuality GmbH 

 E-Commerce Genossenschaft e. G. 

 European Centre for Emerging 

Materials and Processes Dresden 

 Fraunhofer-Institut für Verkehrs- und 

Infrastruktursysteme  

 Fraunhofer-Institut für Werkstoff- und 

Strahltechnik

 GISA GmbH

 Helmholtz-Zentrum Dresden -

Rossendorf

ASSOCIATED PARTNERS
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STRUCTURE OF THE CENTER

Big Data Life Cycle Management and Workflows

Efficient Big Data Architectures

Data Quality /

Data Integration

Visual

Analytics

Knowledge

Extraktion

Life sciences

Material and Engineering sciences

Digital Humanities

Environmental / Geo sciences

Business Data

Service

center
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 Data-intensive computing   W.E. Nagel

 Data quality / Data integration  E. Rahm

 Databases W. Lehner, E. Rahm

 Knowledge extraction/Data mining

C. Rother, P. Stadler, G. Heyer

 Visualization 

S. Gumhold, G. Scheuermann

 Service Engineering, Infrastructure   

K.-P. Fähnrich, W.E. Nagel, M. Bogdan

RESEARCH PARTNERS
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 Life sciences G. Myers

 Material / Engineering sciences M. Gude

 Environmental / Geo sciences J. Schanze

 Digital Humanities G. Heyer

 Business Data B. Franczyk

APPLICATION COORDINATORS
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 ScaDS Dresden/Leipzig

 Big Data Integration

 Introduction

 Matching product offers from web shops

 DeDoop: Deduplication with Hadoop 

 Privacy-preserving record linkage with PP-Join

 Cryptographic bloom filters

 Privacy-Preserving PP-Join (P4Join)

 GPU-based implementation

 Big Graph Data

 Graph-based Business Intelligence with BIIIG

 GraDoop: Hadoop-based data management and analysis 

 Summary and outlook

AGENDA
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BIG DATA ANALYSIS PIPELINE
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 Thousands of data sources (shops/merchants)

 Millions of products and 

product offers 

 Continous changes

 Many similar, but 

different products

 Low data quality 

BIG DATA INTEGRATION USE CASE
INTEGRATION OF PRODUCT OFFERS IN COMPARISON PORTAL

12



LEARNING-BASED MATCH APPROACH

Product Code
Extraction

Manufacturer
Cleaning

Automatic
Classification

Product
Offers

Training Data
Selection

Matcher
Application

Classifier
Learning

Blocking
(Manufacturer

+ Category)
Matcher

Application Classification

Classifier

Product
Match Result

 Training

 Application

 Pre-processing
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 Blocking to reduce search space

 group similar objects within blocks based on blocking key

 restrict object matching to objects from the same block

 Parallelization

 split match computation in sub-tasks to be executed in parallel

 exploitation of Big Data infrastructures such as Hadoop

(Map/Reduce or variations)

HOW TO SPEED UP OBJECT MATCHING?
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GENERAL OBJECT MATCHING WORKFLOW
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 Parallel execution of  data integration/

match workflows with Hadoop

 Powerful library of match and blocking

techniques

 Learning-based configuration 

 GUI-based workflow specification 

 Automatic generation and execution of  

Map/Reduce jobs on different clusters 

 Automatic load balancing for optimal scalability 

 Iterative computation of transitive closure (extension of MR-CC) 

DEDOOP: EFFICIENT DEDUPLICATION WITH HADOOP
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“This tool by far shows the 

most mature use of 

MapReduce for data 

deduplication” 
www.hadoopsphere.com



DEDOOP OVERVIEW

S
Blocking

Similarity
Computation

Match
Classification

M

RS

T
RS 
[0,1]

Machine 
Learning

R

General ER workflow

• Decision Tree
• Logistic Regression
• SVM
• …

• Standard Blocking
• Sorted Neighborhood
• PPJoin+
• …

• Threshold
• Match rules
• ML model
• …

• Edit Distance
• n-gram
• TFIDF
• …Blocking Key Generators

• Prefix
• Token-based
• …

C
o

re

Dedoop‘s general MapReduce workflow

Classifier
Training Job

Data 
Analysis Job

Blocking-based Matching Job
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 ScaDS Dresden/Leipzig

 Big Data Integration

 Introduction

 Matching product offers from web shops

 DeDoop: Deduplication with Hadoop 

 Privacy-preserving record linkage with PP-Join

 Cryptographic bloom filters

 Privacy-Preserving PP-Join (P4Join)

 GPU-based implementation

 Big Graph Data

 Graph-based Business Intelligence with BIIIG

 GraDoop: Hadoop-based data management and analysis 

 Summary and outlook

AGENDA
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 Need for comprehensive privacy support (“privacy by design”)

 Privacy-preserving publishing of datasets

 Privacy-preserving record linkage

 Privacy-preserving data mining 

 Privacy-preserving record linkage 

 object matching with encrypted data to preserve privacy

 conflicting requirements: high privacy, scalability and match 

effectiveness

 use of central linking unit (Trusted third party) vs. symmetric 

approaches (Secure Multiparty Computing)

PRIVACY FOR BIG DATA
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 effective and simple encryption uses cryptographic bloom filters 

(Schnell et al, 2009)

 tokenize all match-relevant  attribute values, e.g. using bigrams or 

trigrams

 typical attributes: first name, last name (at birth), sex, date of birth, country of 

birth, place of birth

 map each token with a family of one-way hash functions to fixed-size 

bit vector (fingerprint)

 original data cannot be reconstructed 

 match of bit vectors (Jaccard similarity) is good approximation of 

true match result    

PPRL WITH BLOOM FILTERS
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SIMILARITY COMPUTATION - EXAMPLE
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0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1
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 one of the most efficient similarity join  algorithms 

 determine all pairs of records with simJaccard(x,y) ≥ t

 use of filter techniques to reduce search space

 length, prefix, and position filter

 relatively easy to run in parallel 

 good candidate to improve scalability for PPRL

 evaluate set bit positions instead of (string) tokens   

PP-JOIN: POSITION PREFIX JOIN (XIAO ET AL, 2008)
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 matching records pairs must have similar lengths 

 length / cardinality: number of set bits in bit vector

 Example for minimal similarity t = 0,8:

 record B of length 4 cannot match with C and all records with greater
length (number of set positions), e.g., A

 Exclude from comparison if length of shorter record is less than t* length of

LENGTH FILTER

SimJaccard(x, y) ≥ t ⇒ |x| ≥ | y| ∗ t

Bit vector

0  1  0  1  1  1  1  1  1  1  0  0  0

ID

1  0  1  0  0  0  0  0  1  1  0  0 0

0  0  0  1  1  1  1  1  1  1  0  0 0

B

C

A

card.

8

4

7

length filter

7 * 0.8 = 5.6  >  4



 Similar records must have a minimal overlap α in their sets of tokens (or set bit 

positions) 

 Prefix filter approximates this test 

 reorder bit positions for all fingerprints according to their overall frequency from 

infrequent to frequent

 exclude pairs of records without any overlap in their prefixes with 

 Example (t = 0.8)

PREFIX FILTER
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prefix_length(x) = é ( (1-t)∗|x|) + 1 

SimJaccard(x, y) ≥ t  ⇔ Overlap(x, y) ≥ α = é(
𝒕

𝟏+𝒕
∗ (|𝒙|) + |𝒚|) ) 

0 0  0  1  1 1  prefix fingerprint

1 0  1    

0 0  0  1  1 1  

0 1  0  1  1

reordered fingerprint

0  1  0  1  1  1  1  1  1  1  0 0  0  0

ID

1  0  1  0  0  0  0  0  1  1  0  0  0  0

0  0  0  1  1  1  1  1  1  1  0 0  0  0

B

C

A

card.

8

4

7

AND operation on prefixes shows non-zero result for C and A so that these records still need 

to be considered for matching 



 improvement of prefix filter to avoid matches even for overlapping 

prefixes  

 estimate maximally possible overlap and checking whether it is below the minimal 

overlap α to meet threshold t 

 original position filter considers the position of the last common prefix token  

 revised position filter 

 record x, prefix                                    length 9

 record y, prefix                                    length 8 

 highest prefix position (here fourth pos. in x)  limits possible overlap with 

other record: the third position in y prefix cannot have an overlap with x  

 maximal possible overlap = #shared prefix tokens (2) + min (9-3, 8-3)= 7 

< minimal overlap α  = 8 

P4JOIN: POSITION FILTER
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 comparison between NestedLoop, P4Join, MultiBitTree

 MultiBitTree: best filter approach in previous work by Schnell 

 applies length filter and organizes fingerprints within a binary tree so 

that fingerprints with the same set bits are grouped within sub-trees

 can be used to filter out many fingerprints from comparison 

 two input datasets R, S 

 determined with FEBRL data generator 

N=[100.000, 200.000, …, 500.000]. |R|=1/5⋅N, |S|=4/5⋅N

 bit vector length: 1000

 similarity threshold  0.8

EVALUATION
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 runtime in minutes on standard PC

 similar results for P4Join and Multibit Tree

 relatively small improvements compared to NestedLoop

EVALUATION RESULTS
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Approach
Dataset size N

100.000 200.000 300.000 400.000 500.000

NestedLoop 6,10 27,68 66,07 122,02 194,77

MultiBitTree 4,68 18,95 40,63 78,23 119,73

P4 Length filter only 3,38 20,53 46,48 88,33 140,73

P4 Length+Prefix 3,77 22,98 52,95 99,72 159,22

P4 Length+Prefix+Position 2,25 15,50 40,05 77,80 125,52



 Operations on bit vectors easy to compute on GPUs

 Length and prefix filters  

 Jaccard similarity

 Frameworks CUDA und OpenCL support data-parallel 

execution of general computations on GPUs   

 program („kernel“) written in C dialect  

 limited to base data types  (float, long, int, short, arrays)

 no dynamic memory allocation (programmer controls memory 

management)

 important to minimize data transfer between main memory and 

GPU memory

GPU-BASED PPRL 
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 partition inputs R and S (fingerprints sorted by length) into equally-

sized partitions that fit into GPU memory

 generate match tasks per pair of partition  

 only transfer to GPU if length intervals per partition meet length 

filter

 optional use of CPU thread to additionally match on CPU 

EXECUTION SCHEME

𝐒
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GPU thread

CPU thread(s)

Match task
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GPU memory

Replace
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Read
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Kernel0

Kernel|R0|-1

…
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29

b
it

s
ca

rd
p

re
fi

x

b
it

s
ca

rd
p

re
fi

x b
it

s

b
it

s
ca

rd
p

re
fi

x

b
it

s
ca

rd
p

re
fi

x

Main memory (host)



100.000 200.000 300.000 400.000 500.000

GForce GT 610 0,33 1,32 2,95 5,23 8,15

GeForce GT 540M 0,28 1,08 2,41 4,28 6,67

GPU-BASED EVALUATION RESULTS
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GeForce GT 610
• 48 Cuda Cores@810MHz
• 1GB
• 35€

GeForce GT 540M
• 96 Cuda Cores@672MHz
• 1GB

 improvements by up to a factor of 20, despite low-profile graphic cards

 still non-linear increase in execution time with growing data volume



 ScaDS Dresden/Leipzig

 Big Data Integration

 Introduction

 Matching product offers from web shops

 DeDoop: Deduplication with Hadoop 

 Privacy-preserving record linkage with PP-Join

 Cryptographic bloom filters

 Privacy-Preserving PP-Join (P4Join)

 GPU-based implementation

 Big Graph Data

 Graph-based Business Intelligence with BIIIG

 GraDoop: Hadoop-based data management and analysis 

 Summary and outlook

AGENDA
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„GRAPHS ARE EVERYWHERE“
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Facebook

ca. 1.3 Billion users

ca. 340 friends per user

Twitter

ca. 300 Million users

ca. 500 Million Tweets per day

Internet

ca. 2.9 Billion Users

Gene (human)

20,000-25,000

ca. 4 Million individuals

Patients

> 18 Millionen (Germany)

Illnesses

> 30.000

World Wide Web

ca. 1 Billion Websites

LOD-Cloud

ca. 31 Billion Triples

Social science Engineering Life science Information science



 Business intelligence usually based on relational data warehouses

 enterprise data is integrated within dimensional schema  

 analysis limited to predefined relationships 

 no support for relationship-oriented data mining

 Graph-based approach (BIIIG)

 Integrate data sources within an instance graph by preserving 

original relationships between data objects (transactional and 

master data)

 Determine subgraphs (business transaction graphs) related to 

business activities  

 Analyze subgraphs or entire graphs with aggregation queries, 

mining relationship patterns, etc. 

USE CASE: GRAPH-BASED BUSINESS INTELLIGENCE
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SAMPLE GRAPH
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BIIIG DATA INTEGRATION AND ANALYSIS WORKFLOW
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„Business Intelligence on Integrated Instance Graphs“



SCREENSHOT FOR NEO4J IMPLEMENTATION
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 Relational database systems

 store vertices and edges in tables

 utilize indexes, column stores, etc.

 Graph database system, e.g. Neo4J

 use of property graph data model: vertices and edges have arbitrary 

set of properties ( represented as key-value pairs )

 focus on simple transactions and queries 

 Distributed graph processing systems, e.g., Google Pregel, Apache 

Giraph, GraphX, etc. 

 In-memory storage of graphs in Shared Nothing cluster

 parallel processing of general graph algorithms, e.g. page rank, 

connected components, …  

GRAPH DATA MANAGEMENT
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A comprehensive framework and research platform

for efficient, distributed and domain independent

graph analytics.

WHAT‘S MISSING?
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 Hadoop-based framework for graph data management and analysis

 Graph storage in scalable distributed store, e.g., HBase

 Extended property graph data model

 operators on graphs and sets of (sub) graphs

 support for semantic graph queries  and  mining 

 Leverages powerful components of Hadoop ecosystem 

 MapReduce, Giraph, Spark, Pig, Drill … 

 New functionality for graph-based processing workflows and graph 

mining 

GRADOOP CHARACTERISTICS
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GRADOOP – HIGH LEVEL ARCHITECTURE
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Partitioned Directed Labeled Attributed Multigraph

EXTENDED PROPERTY GRAPH MODEL
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GRADOOP OPERATORS
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Operator Input Output

Aggregation
𝛾: 𝒢 → ℝ ∪ Σ

𝐺 ↦ 𝑔

Graph 𝐺 Number/String 𝑔

Subgraph Discovery
𝜃𝜐,𝜖: 𝒢 → 𝔾

𝐺 ↦ 𝒢

Graph  𝐺
Vertex map 𝜐: 𝑉 → 𝔾

Edge map 𝜖: 𝐸 → 𝔾

Graph set 𝒢

Single Graph

Operations

• Summarization

• Pattern Match

• Projection

Operator Input Output

Selection
𝜎𝜑: 𝔾 → 𝔾

𝒢 ↦ 𝒢′

Graph set    𝒢
Predicate

𝜑: 𝒢 → {0,1}

Graph set 𝒢′
Graph Set

Operations

• Map

• Union

• Intersect

• Difference

Operator Input Output

Similarity
~: 𝒢 × 𝒢 → ℝ
 𝐺1,  𝐺2 ↦ 𝑠

Graphs 𝐺1, 𝐺2 Similarity 𝑠Binary Graph

Comparison

• Edit Steps

• Equivalence

• Equality

Operator Input Output

Frequent Subgraphs
𝜙𝑡: 𝔾 → 𝔾

𝒢 ↦ 𝒢′

Graph set 𝒢
Treshold 0 ≤ 𝑡 ≤ 1

Graph set 𝒢′
n-ary Graph

Comparison
• Inner Join

• Outer Join



IMPLEMENTATION STATUS
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Gradoop core

Gradoop-
MapReduce

Gradoop-Giraph

Gradoop-BIIIG

Hadoop 1.2.1 Hbase 0.98.7

Giraph 1.1.0

EPG Model

HBaseGraphStore

Bulk Load

I/O Formats

Subgraph Discovery

I/O FormatsSelection

Aggregation

BTG Analysis Pipeline

Data Import



BIIIG WITH GRADOOP

Foodbroker

Integrated 

Instance Graph

Bulk

Load
Subgraph

Discovery

Selection Aggregation𝐺 𝒢 𝒢′ 𝐺, 𝑔
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 ScaDS Dresden/Leipzig

 Big Data Integration

 Introduction

 Matching product offers from web shops

 DeDoop: Deduplication with Hadoop 

 Privacy-preserving record linkage with PP-Join

 Cryptographic bloom filters

 Privacy-Preserving PP-Join (P4Join)

 GPU-based implementation

 Big Graph Data

 Graph-based Business Intelligence with BIIIG

 GraDoop: Hadoop-based data management and analysis 

 Summary and outlook

AGENDA
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 ScaDS Dresden/Leipzig 

 Research focus on data integration, knowledge extraction, visual 

analytics

 broad application areas  (scientific + business-related)  

 solution classes for applications with similar requirements   

 Big Data Integration 

 Big data poses new requirements for data integration (variety, 

volume, velocity, veracity) 

 comprehensive data preprocessing and cleaning 

 Hadoop-based approaches for improved scalability, e.g. Dedoop

 Usability: machine-learning approaches, GUI, …  

SUMMARY
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 Scalable Privacy-Preserving Record Linkage

 bloom filters allow simple, effective and relatively efficient match 
approach 

 Privacy-preserving PP-Join (P4JOIN) achieves comparable performance 
to multibit trees but easier to parallelize

 GPU version achieves significant speedup  

 further improvements needed to reduce quadratic complexity 

 Big Graph Data

 high potential of graph analytics even for business data   (BIIIG)

 GraDoop: infrastructure for entire processing pipeline: graph 
acquisition, storage, integration, transformation, analysis (queries + 
graph mining), visualization  

 leverages Hadoop ecosystem including graph processing systems 

 extended property graph model with powerful operators 

SUMMARY (2)
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 Parallel execution of more diverse data integration workflows for text 

data, image data, sensor data, etc. 

 learning-based configuration to minimize manual effort  (active 

learning, crowd-sourcing)  

 Holistic  integration of many data sources (data + metadata)

 clustering across many sources  

 N-way merging of related ontologies (e.g. product taxonomies)

 Improved privacy-preserving record linkage 

 better scalability, also for n-way (multi-party) PPRL 

 Big Graph data management 

 complete processing framework  

 improved usability

OUTLOOK
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