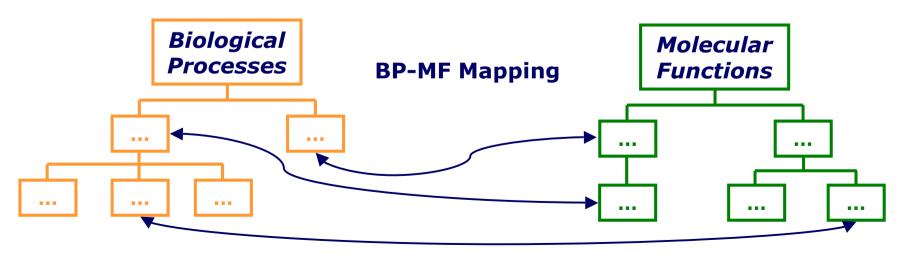
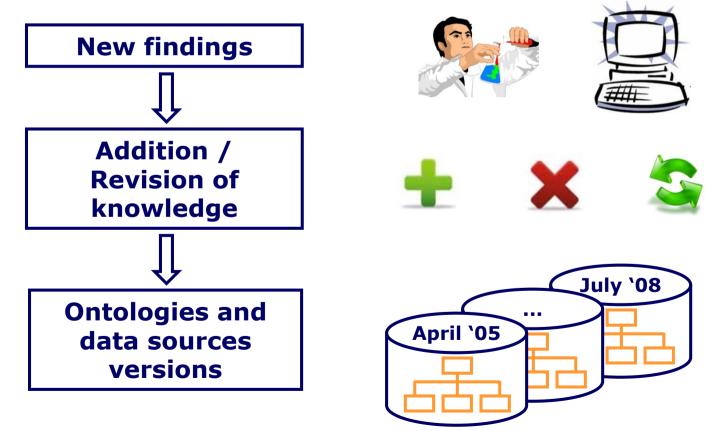
An Evolution-based Approach for Assessing Ontology Mappings – A Case Study in the Life Sciences

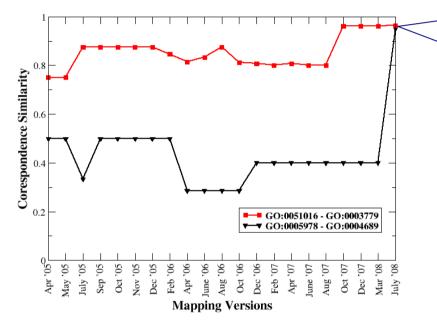
Andreas Thor, Michael Hartung, <u>Anika Groß</u>, Toralf Kirsten, Erhard Rahm



Ontologies and Ontology Mappings


- **Ontologies** became widely accepted to represent knowledge
 - Life sciences: semantic descriptions of biological objects (annotations)
- **Ontology Mappings:** set of semantic correspondences between concepts of different ontologies
 - Crucial for data integration, enhanced data analysis, ...
 - Generated by ontology matching approaches

Evolution


Domain knowledge changes

- > continuous and numerous modifications of ontologies and related data sources
- > periodical releases

Impacts of Evolution on Ontology Mappings

• <u>Current state</u> Match approaches only consider information about latest (current) ontology versions

Is the **black** correspondence as good as the **red** one?

- Possible instabilities of match correspondences due to evolution of ontologies and/or related data source
- <u>Assumption</u> Reasonable to draw conclusions from evolution of a match correspondence to assess its quality in the current version

Contributions

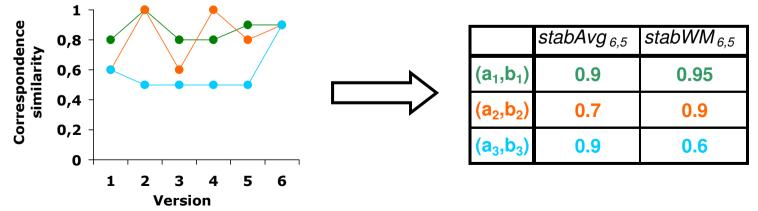
- Generic approach to extend generated ontology mappings using information about its historic changes
 - Usable to classify correspondences w.r.t. their quality, e.g., in categories "good and stable" or "good & unstable"
- Definition of two stability measures
 - > Quantify the evolution of similarity values for concept correspondences
- Example evaluation in the life sciences

Approach

- Matching process is executed for different ontology versions
- Sequence of match similarities *sim_i (a,b,m)*
 - > Determined by (an arbitrary) matcher m
 - For correspondence (a,b)
 - > In version *i*
- Characterize correspondence stability
 - ➢ For current version n
 - > In comparison to last k versions

Stability Measures

• Average Stability


> Average similarity difference per version change

$$stabAvg_{n,k}(a,b,m) = 1 - \frac{1}{k} \cdot \sum_{i=n-k}^{n-1} |sim_{i+1}(a,b,m) - sim_i(a,b,m)| \in [0,1]$$

• Weighted Maximum Stability

Proximity of similarities in the last versions compared to the current version

$$stabWM_{n,k}(a,b,m) = 1 - \max_{i=1...k} \left[\frac{|sim_n(a,b,m) - sim_{n-i}(a,b,m)|}{i} \right] \in [0,1]$$

Evaluation

• Settings

- > Mapping GO *biological processes* to *molecular functions*
- Instance based matching (using Ensembl source)
- Result: 2497 correspondences (similarity ≥ 0.8)
- Classification of correspondences w.r.t. additional criteria

accepted candidates questionable

$\begin{array}{ c c c c } sim_{26} \\ > 0.9 \\ sim_{26} \\ \le 0.9 \end{array}$	stabWM > 0.95	0.95 ≥ stabWM ≥ 0.85	0.85 > stabWM	Σ
stabAvg > 0.95	424 <mark>55%</mark> 44	37 15% ⁵⁵	11 25	596
0.95 ≥ stabAvg ≥ 0.85	863 96	203	235 30% 125	1734
0.85 > stabAvg	17 5	13 16	85 31	167
Σ	1449	536	512	2497

Conclusions and Future Work

- Generic evolution-based approach for assessing ontology mappings
 - Independent from match approach
 - Based on stability measures
- → Ranking of correspondences for the "match or non-match" decision
- Example evaluation in the life sciences
- Applicability of our approach in different domains
- Alternative stability measures by using further knowledge (e.g., ontology structure)