arXiv:1910.04493v1 [cs.DC] 10 Oct 2019

Graph Sampling with Distributed In-Memory
Dataflow Systems

Kevin Gomez
gomez@informatik.uni-leipzig.de

Matthias Taschner

taeschner@informatik.uni-leipzig.de rostami@informatik.uni-leipzig.de

M. Ali Rostami

University of Leipzig University of Leipzig University of Leipzig
Christopher Rost Erhard Rahm
rost@informatik.uni-leipzig.de rahm@informatik.uni-leipzig.de
University of Leipzig University of Leipzig
ABSTRACT as well as the quality of sampling regarding retained graph

Given a large graph, a graph sample determines a subgraph
with similar characteristics for certain metrics of the origi-
nal graph. The samples are much smaller thereby accelerat-
ing and simplifying the analysis and visualization of large
graphs. We focus on the implementation of distributed graph
sampling for Big Data frameworks and in-memory dataflow
systems such as Apache Spark or Apache Flink. We evaluate
the scalability of the new implementations and analyze to
what degree the sampling approaches preserve certain graph
metrics compared to the original graph. The latter analysis
also uses comparative graph visualizations. The presented
methods will be open source and be integrated into GRADOOP,
a system for distributed graph analytics.

KEYWORDS
Distributed Graph Sampling, Apache Flink, Apache Spark

1 INTRODUCTION

Sampling is used to determine a subset of a given dataset
that retains certain properties but allows more efficient data
analysis. For graph sampling it is necessary to retain not only
general characteristics of the original data but also the struc-
tural information. Graph sampling is especially important
for the efficient processing and analysis of large graphs such
as social networks [8, 13]. Furthermore, sampling is often
needed to allow the effective visualization of large graphs.
Our contribution in this paper is to outline the distributed
implementation of known graph sampling algorithms for
improved scalability to large graphs as well as their evalua-
tion. The sampling approaches are added as operators to the
open-source distributed graph analysis platform Grapoop!
[6, 7] and used for interactive graph visualization [11]. Our
distributed sampling algorithms are, like GRADOOP, based
on the dataflow execution framework Apache Flink but the
implementation would be similar for Apache Spark. The eval-
uation for different graphs considers the runtime scalability

http://www.gradoop.com

properties and the similarity of graph visualizations.

This paper is structured as follows: We briefly discuss re-
lated work in Section 2 and provide background information
on graph sampling in Section 3. In Section 4, we explain
the distributed implementation of four sampling algorithms
with Apache Flink. Sections 5 describes the evaluation results
before we conclude in Section 6.

2 RELATED WORK

Several previous publications address graph sampling algo-
rithms but mostly without considering their distributed im-
plementation. Hu et al. [4] survey different graph sampling
algorithms and their evaluations. However, many of these
algorithms cannot be applied to large graphs due to their
complexity. Leskovec et al. [8] analyze sampling algorithms
for large graphs but there is no discussion of distributed or
parallel approaches. Wang et al. [13] focuses on sampling al-
gorithms for social networks but again without considering
distributed approaches.

The only work about distributed graph sampling we are
aware of is a recent paper by Zhang et al. [16] for implemen-
tations based on Apache Spark. In contrast to our work, they
do not evaluate the speedup behavior for different cluster
sizes and the scalability to different data volumes. Our study
also includes a distributed implementation and evaluation
of random walk sampling.

3 BACKGROUND

We first introduce some basic definition of a graph sam-
ple and a graph sample algorithm. Afterwards, we specify
some basic sampling algorithms and outline important graph
metrics for both, visual and metrical comparison in the eval-
uation chapter.

3.1 Graph Sampling

A directed graph G = (V,E) can be used to express the
interactions of users of a social network. The user can be

denoted as a vertex v € V and a relationship between two
user v and u can be denoted as a directed edge e = (v, u) € E.

Since popular social networks such as Facebook and Twit-
ter contains billions of users and trillions of relationships,
the resulting graph is too big for both, visualization and ana-
lytical tasks. A common approach to reduce the size of the
graph is to use graph sampling to scale down the information
contained in the original graph.

Definition 1 (GRaPH SAMPLE) A graph S = (Vs,Es) is a
sampled graph (or graph sample) of graph G = (V, E) iff the
following three constraints are met: Vg C V, Eg C E and
Es € {(u,v)|u € Vs,v € Vs}.2

Definition 2 (GRAPH SAMPLE ALGORITHM) A graph sam-
ple algorithm is a function from a graph set G to a set of
sampled graphs S, as f : G — 8§ in which the set of ver-
tices V and edges E will be reduced until a given threshold
s € [0,1] is reached. s is called sample size and defines the ra-
tio of vertices (or edges) the graph sample contains compared
to the original graph.

A graph sample is considered to be fruitful if it can repre-
sent many properties of the original graph. For example, if
we want to find dense communities, like a group of friends
in a social network, the sampled graph is only worthwhile if
it preserves these relations as much as possible. We evaluate
this concept by comparing some predefined graph properties
on both original and sampled graphs.

3.2 Basic Graph Sampling Algorithms

Many graph sampling algorithms have already been investi-
gated but we will limit ourselves to four basic approaches in
this paper: random vertex sampling, random edge sampling,
neighborhood sampling, and random walk sampling.

Random vertex sampling is the most straightforward sam-
pling approach that uniformly samples the graph by selecting
a subset of vertices and their corresponding edges based on
the selected sample size s. For the distributed implementa-
tion in a shared-nothing approach, the information of the
whole graph is not always available in every node. Therefore,
we consider an estimation by selecting the vertices using s
as a probability. This approach is also applied on the edges
in the random edge sampling.

The idea of the random neighborhood sampling is to im-
prove topological locality over the simple random vertex
approach. Therefore, when a vertex is chosen to be in the
resulting sampled graph, all neighbors are also added to the
sampled graph. Optionally, only incoming or outgoing edges
can be taken into account to select the neighbors of a vertex.

2In the existing publications, there are different approaches toward the
vertices with zero-degrees in the sampled graph. Within this work we
choose the approach to remove all zero-degree vertices from the sampled
graph.

For the random walk sampling, one or more vertices are
randomly selected as start vertices. For each start vertex, we
follow a randomly selected outgoing edge to its neighbor. If
a vertex has no outgoing edges or if all edges were followed
already, we jump to any other randomly chosen vertex in the
graph and continue the walk there. To avoid keeping stuck
in dense areas of the graph we added a probability to jump to
another random vertex instead of following an outgoing edge.
This process continues until a desired number of vertices
have been visited and the sample size s has been met. All
visited vertices and all edges whose source and target vertex
was visited will be part of the graph sample result.

3.3 Important Graph Metrics

As we mentioned, we present an evaluation on the visual
and metrical comparison of the original graph and the sam-
pled one. Following is a set of graph metrics which will be
evaluated in Section 5.

o Cardinality of vertex and edge set, denoted as |V| and
|E].

Graph density D: The ratio of all actually existing
edges to all possible edges in the graph, defined by:

|E

= wavi—n

Number of triangles 7: The number of subsets of ver-
tices in the graph with three elements which are fully
connected (triangle or closed triple).

Global clustering coefficient Cg: The ratio of the num-
ber of triangles 7 to the number of all triples |Triple|
in the graph (see [1]), defined by:

3T
g- |Triple|

Average local clustering coefficient C: The local clus-
tering coefficient of a vertex is the ratio of the edges
that actually connect its neighbors to the maximum
possible number of edges between those neighbors.

With a value between 0 and 1, it describes how close

the vertex and its neighborhood are to a clique (see [14]).

We compute the average local clustering coefficient

for all vertices in the graph.

o Number of weakly connected components |[WCC|: A
maximal connected subgraph of a graph in which each
two vertices can be reached through a path is called
a weakly connected component. The number of such
components in a graph is the target parameter.

e The average, minimum and maximum vertex degree

in the graph, denoted as duug, dmin, and dmax.

4 IMPLEMENTATION

The goal of the distributed implementation of graph sam-
pling are to achieve fast execution and good scalability for
large graphs with up to billions of vertices and edges. We
therefore want to utilize the parallel processing capabili-
ties of shared-nothing clusters and, specifically, distributed
dataflow systems such as Apache Spark [15] and Apache
Flink [2]. In contrast to the older MapReduce approach, these
frameworks offer a wider range of transformations and keep
data in main memory between the execution of operations.
Our implementations are based on Apache Flink but can
be easily transferred to Apache Spark. We first give a brief
introduction to the programming concepts of the distributed
dataflow model. We then outline the implementation of our
sampling operators.

4.1 Distributed Dataflow Model

The processing of data that exceeds the computing power
or storage of a single computer can be handled through the
use of distributed dataflow systems. Therein the data is pro-
cessed simultaneously on shared-nothing commodity cluster
nodes. Although details vary for different frameworks, they
are designed to implement parallel data-centric workflows,
with datasets and primitive transformations as two funda-
mental programming abstractions. A dataset represents a
typed collection partitioned over a cluster. A transformation
is a deterministic operator that transforms the elements of
one or two datasets into a new dataset. A typical distributed
program consists of chained transformations that form a
dataflow. A scheduler breaks each dataflow job into a di-
rected acyclic execution graph, where the nodes are working
threads and edges are input and output dependencies be-
tween them. Each thread can be executed concurrently on
an associated dataset partition in the cluster without sharing
memory.

Transformations can be distinguished into unary and bi-
nary operators, depending on the number of input datasets.
Table 1 shows some common transformations from both
types which are relevant for this work. The filter transfor-
mation evaluates a user-defined predicate function to each
element of the input dataset. If the function evaluates to true,
the element is part of the output. Another simple transfor-
mation is map. It applies a user-defined map function to each
element of the input dataset which returns exactly one ele-
ment to guarantee a one-to-one relation to the output dataset.
A transformation processing a group instead of a single ele-
ment as input is reduce where the input, as well as output, are
key-value pairs. All elements inside a group share the same
key. The transformation applies a user-defined function to
each group of elements and aggregates them into a single

Transf. Type Signature Constraints

Filter unary [,OCA oclI

Map unary I CAOCB |I|=]0|

Reduce unary I,OCAXB |I| >|0]A|O] <A
Join binary OCclj~I, L CALCB

(I/O : input/output datasets, A/B : domains)
Table 1: Selected transformations

output pair. A common binary transformation is join. It cre-
ates pairs of elements from two input datasets which have
equal values on defined keys. A user-defined join function
is applied for each pair that produces exactly one output
element.

4.2 Sampling Operators

The operators for graph sampling compute a subgraph by
either randomly selecting a subset of vertices or a subset of
edges. In addition, neighborhood information or graph tra-
versal can be used. The computation uses a series of transfor-
mations on the input graph. Latter is stored in two datasets,
one for vertices and one for edges. For each sampling opera-
tor a filter is applied to the output graph’s vertex dataset to
remove all zero-degree vertices following the definition of a
graph sample in Section 3.

4.2.1 Random Vertex (RV) and Random Edge (RE) Sampling.
The input for the RV and RE operator is a input graph and
a sample size s. For RV, a filter operator is applied to the
vertex dataset of the input graph. A vertex will be kept if a
generated random value r € [0, 1] is lower or equal to s. An
edge will be kept if its source and target vertices occur in
the dataset of the remaining vertices.

RE works the other way around, as a filter transformation
is applied to the edge dataset of the input graph. An edge
will be kept, again if the generated random value r € [0, 1]
is lower or equal to s. A vertex will be kept if it’s either the
source or the target vertex of a remaining edge. The dataflow
of the RV and RE operator can be seen in Figure 1 and 2.

4.2.2 Random Vertex Neighborhood (RVN) Sampling. This
approach is similar to the RV operator but also adds the di-
rect neighbors of a vertex to the sample. The selection of the
neighbors can be restricted according to the direction of the
connecting edge (incoming, outgoing or both). In the imple-
mentation, randomly selected vertices of the input vertex
dataset are marked as sampled with a boolean flag. As for RV,
we select a vertex by setting the flag to true, if a generated
random value r € [0, 1] is lower or equal than the given
sample size s or set it to false otherwise. In a second step,
the marked vertices are joined with the input edge dataset,

=

Input
Graph

&)

Filter

Keep vertex 1if
random value is
lower or equal to s

Join
Keep edge if source
and target Vertex
is in v,

Figure 1: Dataflow RV Operator.

transforming each edge into a tuple containing the edge itself
and the boolean flags for its source and target vertex. A filter
operator is applied to the edge tuples, retaining only those
edges, whose source or target vertices where sampled and
matching the given neighborhood relation. This relation will
be either a neighbor on an incoming edge of a sampled ver-
tex, a neighbor on an outgoing edge, or both. The dataflow
from an input logical graph to an sampled graph is illustrated
in Figure 3.

4.2.3 Random Walk (RW) Sampling. This approach uses a
random walk algorithm to walk over vertices and edges of
the input graph. Each visited vertex and edges connecting
those vertices will then be returned as the sampled graph.
Figure 4 shows the dataflow of an input graph to a sampled
graph of this operator. At the beginning we transform the
input graph to a specific Gelly format. We are using Gelly,
the Google Pregel [10] implementation of Apache Flink, to
implement a random walk algorithm.

Pregel utilizes the bulk-synchronous-parallel [12] para-
digm to create the vertex-centric-programming model. An
iteration in a vertex-centric program is called superstep. Dur-
ing a superstep each vertex of the graph can compute a new
state in a compute function. In a message function each vertex
is able to prepare messages for other vertices. At the end
of each superstep each worker of the cluster can exchange
the prepared massages during a synchronization barrier. In
our operator we consider a message from one vertex to one
of its neighbors a *walk’. A message to any other vertex is
considered as ’jump’.

At the beginning of the random walk algorithm a single
start vertex is randomly selected and marked as visited. The
marked vertex will be referred to as walker. In the first su-
perstep the walker either randomly picks one of its outgoing
and not yet visited edges, walks to this neighbor and marks
the edge as traversed. Or, with the probability of j € [0, 1] or
if there aren’t any outgoing edges left, jumps to any other
randomly selected vertex in the graph. Either the neighbor
or the randomly selected vertex will become the new walker
and the computation starts again. For a multi walk, more

\ /value is lower or

\/ Join
Axcep vertex if

it's either
source or
target of an
sampled edge

Input
Graph

Filter
Keep edge if random

equal to s

Figure 2: Dataflow RE Operator.

than one start vertex can be selected, which allows us to
execute multiple walks in parallel.

For each completed superstep the already visited vertices
are counted. If this number exceeds the desired number of
sampled vertices, the iteration is terminated and the algo-
rithm converges. Having the desired number of vertices
marked as visited, the graph is transformed back and a filter
operator is applied to its vertex dataset. A vertex will be kept
if it is marked as visited. An edge will be kept if its source and
target vertices occur in the dataset of the remaining vertices.

5 EVALUATION

One key feature of distributed shared-nothing systems is
their ability to respond to growing data sizes or problem
complexity by adding additional machines. Therefore, we
evaluate the scalability of our implementations with respect
to increasing data volume and computing resources in the
first part of this section. The second part will contain a more
visual comparison of our sampling algorithms. We will show,
that our implementation computes expressive, structure-
preserving graph samples based on the graph properties
introduced in Section 3.

Setup. The evaluations were executed on a shared-nothing
cluster with 16 workers connected via 1 GBit Ethernet. Each
worker consists of an Intel Xeon E5-2430 6 x 2.5 Ghz CPU,
48 GB RAM, two 4 TB SATA disks and runs openSUSE 13.2.
We use Hadoop 2.6.0 and Flink 1.7.0. We run Flink with 6
threads and 40 GB memory per worker.

We use two types of datasets for our evaluation: synthetic
graphs to measure scalability of the algorithms and real-
world graphs to metrically and visually compare the sampled
and original graph.

To evaluate the scalability of our implementations we use
the LDBC-SNB data set generator [3]. It creates heteroge-
neous social network graphs with a fixed schema. The syn-
thetic graphs mimic structural characteristics of real-world
graphs, e.g., node degree distribution based on power-laws
and skewed property value distributions. Table 2 shows the
three datasets used throughout the benchmark. In addition

VG ()
v Map ~——] Filter
Mark vertices as V V Keep
'sampled' if random Vertex vertex
Value is lower or Centric If marked
Input | cqual to s Input Gelly [rteration |Mark. |as visited
Graph Graph Graph [walk graph
And mark Graph
(0:Edge, 1:Bool, 2:Bool) vertices
Join Join
Transform to Keep edge if Keep edge if
—— tuple source or J J it's source

Target vertex is
marked and matches
neighbor relation

Figure 3: Dataflow RVN Operator.

to the scaling factor (SF) used, the cardinality of vertex and
edge sets as well as the dataset size on hard disk are specified.
Each is stored in the Hadoop distributed file system (HDFS).
The execution times mentioned later include loading the
graph from HDFS, computing the graph sample and writing
the sampled graph back to HDFS. We run three executions
per setup and report the average runtimes.

In addition, we use three real-world graphs from the SNAP
Datasets [9], ego-Facebook, ca-AstroPh and web-Google, to
evaluate the impact of a sampling algorithm on the graph
metrics and thus on the graphs structure.

5.1 Scalability

In many real-world use cases data analysts are limited in
graph size for visual or analytical tasks. Therefore, we run
each sampling algorithm with the intention to create a sam-
pled graph with round about 100k vertices. The used sample
size s for each graph is contained in Table 2. For the RW
operator 3000 walker and a jump probability j = 0.1 where
used.

We first evaluate the absolute runtime and relative speedup
of our implementations. Figure 5 shows the runtimes of the
four algorithms for up to 16 workers using the LDBC. 10
dataset; Figure 6 shows the corresponding speedup values.
While all algorithms benefit from more resources, RVN and
RW gain the most. For RVN, the runtime is reduced from
42 minutes on a single worker to 4 minutes on 16 workers
(speedup 10.5). For RW, a speedup of 7.45 is reached (reduc-
tion from 67 to 9 minutes). The simpler algorithms RV and
RE are already executed fast on a single machine for LDBC. 10.
Hence, their potential for improvement is limited explaining
the lower speedup values.

We also evaluate scalability with increasing data volume
and a fixed number of workers (16 worker). The results in
Figure 7 show that the runtimes of each algorithm increases
almost linearly with growing data volume. For example, the
execution of the RVN algorithm required about 34 seconds
on LDBC. 1 and 2907 seconds on LDBC. 100.

and target
vertex are
marked

Figure 4: Dataflow RW Operator.

SF 4 |E| Disk usage s

1 33M 179M 28GB 0.03
10 304M 1804 M 23.9GB 0.003
100 282.6 M 1.77B 236.0 GB 0.0003

Table 2: LDBC social network datasets

5.2 Metric-Based and Visual Comparison

An ideal sampling algorithm reduces the number of vertices
and edges evenly by a desired amount. At the same time, the
structural properties, as described by the calculated metrics,
should be preserved in the best possible way. For example,
a community of the graph can be thinned out, while the re-
maining vertices should stay equally connected to each other
and thus hardly change their value for the local clustering
coeflicient.

In order to evaluate a sampling algorithm’s impact on the
graph metrics and thus on the graph structure, the metrics
of an original and the sampled graph are compared. As men-
tioned before, we use three real-world graphs from the SNAP
Datasets [9]. Each sampling algorithm is applied three times
to these graphs using a given sample size s to reduce the num-
ber of vertices or edges by about 60%. Due to the included
neighborhood of each selected vertex, RVN requires a much
lower value for s than the other sampling algorithms. For
RW, the number of walkers is scaled according to the num-
ber of vertices, starting with 5 walkers for the ego-Facebook
graph, 20 walkers for the ca-AstroPh graph, and 1000 walkers
for the web-Google graph. The jump probability j = 0.1 re-
mained fixed throughout the experiment. We computed the
proposed metrics for the original graphs and each resulting
sample graph and added the average results to Table 3.

Since easier visualization is a main use case for graph
sampling, we visually compare the original and the sam-
pled graph structures for the ego-Facebook graph. Figure 8a
shows the original graph with a force-directed layout [5].
The vertex size represents the degree, i.e. bigger vertices

4500 16

10000

RV m==m
RE ===
RVN ===
1000 RW

= mﬂm

LDBC.1 LDBC.10 LDBC.100
Dataset

Runtime [s]

RV Linear
4000 . RE RV
RVN RE
3500 RW —5— 8 RVN
—. 3000} & RW
@, a
a \ =]
2 2500 . 3
€ 2000 | ‘%
o
1500 | 5 \
1000 | o 7 -
500 | i
0 s ‘ 1 ‘
1 2 4 8 16 1 2

Number of Workers
Figure 5: Increase worker count.

imply a higher degree. The vertex color stands for its lo-
cal clustering coefficient, where a darker color represents
a higher value. Figures 8b to 8e show the sampled graphs
for the different sampling algorithms. The positions of the
vertices remain persistent compared to the original graph
for all sampled graphs.

RV manages to predictably reduce the number of vertices
as well as the edges. According to Table 3, the number of
triangles in the graph has been reduced dramatically, the
value of the global clustering coefficient is almost completely
preserved. Depending on the original structure, RV decom-
poses a graph into many new weakly connected components.
As seen in Figure 8b, RV visibly thins out the graph but also
destroys many of the existing communities and removes
inter-community edges as well. RE decreases the number of
edges by the desired amount while hardly reducing the num-
ber of vertices. The value for the local clustering coefficient
is reduced by a similar amount as the number of edges. All
other structural properties of the original graph are unpre-
dictably changed. The visualization in Figure 8c shows that
most of the vertices are kept. The deleted edges reduce the
connectivity within the communities and thus the local clus-
tering coefficient of many vertices. RVN reduces the number
of vertices as desired and keeps about 5% to 15% of the edges.
Figure 8d shows the well preserved neighborhood of sampled
vertices, but the samples are lacking at edges connecting the
individual communities. RW reduces the number of vertices
as expected. Figure 8e shows, that edges within the individ-
ual communities and edges connecting those communities
tend to be preserved.

6 CONCLUSION

We outlined distributed implementations for four graph sam-
pling approaches using Apache Flink. Our first experimental
results are promising as they showed good speedup for using
multiple workers and near-perfect scalability for increasing
dataset sizes. The metric-based and visual comparisons with

Number of Workers
Figure 6: Speedup over workers.

Figure 7: Increase data volume.

the original graphs confirmed that the implementations pro-
vide the expected, useful results thereby enabling the ana-
lyst and GRADOOP user to select the most suitable sampling
method. For example, both random vertex and random edge
sampling are useful for obtaining an overview of the graph.
Random vertex neighborhood (RVN) sampling is useful to
analyze neighborhood relationships while random walk sam-
pling is beneficial to study the inter- and intra-connectivity
of communities. In our ongoing work we provide distributed
implementations for further sampling algorithms such as
Frontier Sampling and Forest Fire Sampling.

7 ACKNOWLEDGMENTS

This work is partially funded by Séchsische Aufbau Bank
(SAB) and the European Regional Development (EFRE) under
grant No. 100302179.

REFERENCES

[1] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. 2006.
Complex networks: Structure and dynamics. Physics Reports 424,
4 (2006), 175 — 308. DOI:http://dx.doi.org/https://doi.org/10.1016/j.
physrep.2005.10.009

[2] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink: Stream and
Batch Processing in a Single Engine. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering 36, 4 (2015).

[3] Orri Erling and others. 2015. The LDBC social network benchmark:
Interactive workload. In Proc. SIGMOD.

[4] Pili Hu and Wing Cheong Lau. 2013. A Survey and Taxonomy of
Graph Sampling. CoRR abs/1308.5865 (2013).

[5] Yifan Hu. 2005. Efficient, high-quality force-directed graph drawing.
Mathematica Journal 10, 1 (2005), 37-71.

[6] Martin Junghanns, Max Kiessling, Niklas Teichmann, Kevin Gémez,
André Petermann, and Erhard Rahm. 2018. Declarative and distributed
graph analytics with GRADOOP. PVLDB 11 (2018), 2006—2009. DOI:
http://dx.doi.org/10.14778/3229863.3236246

[7] Martin Junghanns, André Petermann, Niklas Teichmann, Kevin Gémez,
and Erhard Rahm. 2016. Analyzing Extended Property Graphs with
Apache Flink. In Proc. ACM SIGMOD Workshop on Network Data Ana-
Iytics (NDA).

[8] Jure Leskovec and Christos Faloutsos. 2006. Sampling from Large
Graphs. In Proceedings of the 12th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD ’06). ACM,

http://dx.doi.org/https://doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.14778/3229863.3236246

(10

[11

(12

[13

(14

(15

(16

—

=

]

—

]

=

—

New York, NY, USA, 631-636. DOI:http://dx.doi.org/10.1145/1150402.
1150479

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford
Large Network Dataset Collection. http://snap.stanford.edu/data. (June
2014).

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010.
Pregel: A System for Large-scale Graph Processing. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management
of Data (SIGMOD °10). ACM, New York, NY, USA, 135-146. DOI:
http://dx.doi.org/10.1145/1807167.1807184

Ali Rostami, Matthias Kricke, Eric Peukert, Stefan Kiithne, Steffen
Dienst, and Erhard Rahm. 2019. BIGGR: Bringing GRADOOP to appli-
cations. Datenbank-Spektrum 19, 1 (2019).

Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation.
Commun. ACM 33, 8 (Aug. 1990), 103-111. DOI: http://dx.doi.org/10.
1145/79173.79181

T. Wang, Y. Chen, Z. Zhang, T. Xu, L. Jin, P. Hui, B. Deng, and X. Li.
2011. Understanding Graph Sampling Algorithms for Social Network
Analysis. In 2011 31st International Conference on Distributed Com-
puting Systems Workshops. 123-128. DOI :http://dx.doi.org/10.1109/
ICDCSW.2011.34

Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of
’small-world networks. nature 393, 6684 (1998), 440.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation.
USENIX Association.

Fangyan Zhang, Song Zhang, and Christopher Lightsey. 2018. Imple-
mentation and Evaluation of Distributed Graph Sampling Methods
with Spark. Electronic Imaging 2018, 1 (2018), 379-1-379-9. DOIL:
http://dx.doi.org/doi:10.2352/ISSN.2470-1173.2018.01.VDA-379

http://dx.doi.org/10.1145/1150402.1150479
http://dx.doi.org/10.1145/1150402.1150479
http://snap.stanford.edu/data
http://dx.doi.org/10.1145/1807167.1807184
http://dx.doi.org/10.1145/79173.79181
http://dx.doi.org/10.1145/79173.79181
http://dx.doi.org/10.1109/ICDCSW.2011.34
http://dx.doi.org/10.1109/ICDCSW.2011.34
http://dx.doi.org/doi:10.2352/ISSN.2470-1173.2018.01.VDA-379

APPENDIX

(a) Original graph

(c)RE,s =04

(d) RVN, s = 0.025 (e) RW,s = 0.4

Figure 8: ego-Facebook graph with different sampling algorithms

8

Sampling

Graph

Metrics

v |E| D T Cs Cr IWCC| davg dmin dmax
ego-Facebook - 4039 88234 0.0054100 1612010 0.5191743 0.3027734 1 44 1 1045
Orlglnal ca-AstroPh - 18772 396160 0.0011243 1352117 0.3180837 0.6309897 290 43 1 504
web-Google - 875713 5105039 0.0000067 13391903 0.0552306 0.3544989 2746 12 1 130912
ego-Facebook 0.4 1566 14202 0.0057986 102211 0.5438169 0.2779600 20 18 1 280
RV ca-AstroPh 0.4 6728 63550 0.0014041 85677 0.3138863 0.5003834 279 20 1 171
web—GoogIe 0.4 284630 814286 0.0000101 855400 0.0562393 0.3135771 13153 6 1 2246
ego-Facebook 0.4 3910 35347 0.0023123 103893 0.2084985 0.1123553 9 19 1 416
RE ca-AstroPh 0.4 17976 158279 0.0004899 353497 0.2037624 0.2263496 293 18 1 331
Web-Google 0.4 726208 2040907 0.0000039 1458407 0.0361862 0.1337324 15763 6 1 2560
ego-Facebook 0.025 1946 4065 0.0010719 2701 0.0408925 0.1630864 5 5 1 202
RVN ca-AstroPh 0.035 7581 27818 0.0004842 4837 0.0297242 0.1871483 97 8 1 354
web—GoogIe 0.075 384039 743002 0.0000050 221799 0.0096453 0.1322633 11119 4 1 4704
ego-Facebook 0.4 1589 17673 0.0070043 153142 0.5763919 0.2889909 23 23 1 279
RwW ca-AstroPh 0.4 11005 287857 0.0023772 1060122 0.3320357 0.5829372 169 53 1 454
Web-Google 0.4 497465 3290006 0.0000133 9040618 0.0817287 0.3985179 5144 14 1 4050

Table 3: Metric comparison for different sampling algorithms

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Graph Sampling
	3.2 Basic Graph Sampling Algorithms
	3.3 Important Graph Metrics

	4 Implementation
	4.1 Distributed Dataflow Model
	4.2 Sampling Operators

	5 Evaluation
	5.1 Scalability
	5.2 Metric-Based and Visual Comparison

	6 Conclusion
	7 Acknowledgments
	References

