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A B S T R A C T

Data integration tasks such as the creation and extension of knowledge graphs involve the
fusion of heterogeneous entities from many sources. Matching and fusion of such entities require
to also match and combine their properties (attributes). However, previous schema matching
approaches mostly focus on two sources only and often rely on simple similarity measurements.
They thus face problems in challenging use cases such as the integration of heterogeneous
product entities from many sources.

We therefore present a new machine learning-based property matching approach called
LEAPME (LEArning-based Property Matching with Embeddings) that utilizes numerous features
of both property names and instance values. The approach heavily makes use of word
embeddings to better utilize the domain-specific semantics of both property names and instance
values. The use of supervised machine learning helps exploit the predictive power of word
embeddings.

Our comparative evaluation against five baselines for several multi-source datasets with
real-world data shows the high effectiveness of LEAPME. We also show that our approach is
even effective when training data from another domain (transfer learning) is used.

1. Introduction

Data integration tasks such as the creation and refinement of knowledge graphs have to increasingly deal with the matching
nd fusion of data from many sources, e.g., different web sites, already created knowledge bases and repositories. Such knowledge
raphs (KG) physically integrate numerous entities with their properties (attributes) and relationships as well as associated metadata
bout entity types and relationship types in a graph-like structure [1]. Many companies (including Google, Facebook, and Amazon)
re increasingly relying on the integrated and curated information in knowledge graphs and there is also an increasing amount of
esearch on KG creation [2–9] and KG exploitation, e.g. for question answering [10,11].

Integrating new data sources and their entities into a KG is challenging due to the typically large number of different kinds of
ntities and relationships, the high degree of heterogeneity in their representations and the often low data quality with frequently
ncomplete, wrong or contradicting information. Subproblems to deal with include the categorization, matching, clustering and
usion of entities. These steps in turn also require to match the properties of entities, e.g., to focus entity matching on comparable
roperties or to fuse the values of equivalent properties.

Matching properties is far from trivial, especially with many sources. As an example, Fig. 1 shows camera entities (from a real
ataset used in our evaluation) from four sources that may be integrated into a product KG together with some property matches
ndicated by symbols of the same shape. The example shows that there are numerous similar but differently named properties
ith diverse instance values. Matching properties often have completely different names, e.g., for properties ‘‘camera resolution’’,
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Fig. 1. Camera properties from different sources. Two properties from different sources being annotated with the same shape denotes a match.

‘effective pixels’’ and ‘‘megapixel’’. A property in one source, e.g. ‘‘shutter speed’’, may also have several matches in another source,
.g., ‘‘min shutter speed’’ and ‘‘max shutter speed’’. The instance values also show a high degree of heterogeneity due to the use of
ynonyms, abbreviations, different technical units, or numeric values, making it difficult to find matches with standard techniques
hat rely on string similarity metrics applied to either property names or instances. Even if more sophisticated techniques are used
e.g. word embeddings), the computation of similarities is usually unsupervised, making it hard to set thresholds that consistently
chieve a high similarity for related properties and a low one for unrelated ones. The number of properties per entity may also
iffer to a large degree between sources and even within a source, which may affect some techniques.

To help solve the property matching problem in the case of such scenarios, we present a new approach called LEAPME (LEArning-
ased Property Matching with Embeddings). It uses supervised machine learning and makes use of the typically good availability of
nstance in a KG. LEAPME applies a dense neural network and a large set of features to classify a pair of properties from different
ources as related or not. The proposed features make heavy use of word embeddings computed from both the property names and
heir instance values. Word embeddings are numeric vectors associated to single words, created so that they preserve their semantics.
he use of embeddings gives the classifier information about the semantic proximity between two properties even when their string
2
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similarity is low. For example, we expect different words related to camera resolution such as ‘‘MP’’, ‘‘resolution’’ or ‘‘megapixels’’
to have similar embedding vectors. The use of property values provides additional information that is not tied to the name of a
property, and makes the proposal applicable to scenarios in which the properties do not have meaningful names, e.g., identifiers
that are automatically generated by information extraction approaches [12]. The use of machine learning helps use these features in
a smart way, learning what features are more important and how they must be combined, which is of great relevance when it comes
to word embeddings, since they can have a high number of components that would make setting manual weights and similarity
thresholds very difficult.

Specifically, we make the following contributions:

• We propose LEAPME, a new learning-based approach for property matching that is applicable for data integration in scenarios
with many sources that result in a high degree of heterogeneity, e.g., as needed for KG creation and refinement. We propose
the use of numerous features derived from both the property names and property values and the heavy use of word embeddings
for high match quality. These features are exploited by a supervised classifier to avoid setting manual weights and similarity
thresholds for such features.

• We comprehensively evaluate LEAPME on four real-world datasets with entities from several e-commerce contexts. The multi-
source setting makes it reasonable to use some sources as training data in order to match the rest. We also provide a comparison
with five baselines and show that LEAPME clearly outperforms previous approaches even with little training data.

• We show that LEAPME can also achieve better results than the baselines when trained with data obtained from entities of a
different type or domain. The reduced need for domain-specific training data increases the applicability and impact of the new
approach, which shows that the application of supervised machine learning and the development of labeled property matching
datasets including varied domains is crucial, since they allow the creation of context-independent universal classifiers that
would overcome the main disadvantage of supervised approaches.

The next section describes related work on schema matching and the previous use of machine learning for this task. Section 3
formally describes the problem of property matching. Section 4 describes LEAPME in detail. Section 5 contains the evaluation
including the comparison with several baselines and the use of transfer learning. Section 6 summarizes our contributions and
discusses potential future work.

2. Related work

In the last decades, a huge amount of research has been devoted to schema and ontology matching to automatically determine
corresponding schema attributes (properties) and ontology concepts. As described in several survey articles and books [13–17],
most of the proposed approaches focus on pairwise matching between two schemas or ontologies and utilize a combination of
several similarity values to determine likely matches. The most common approach is to determine the linguistic similarity of
properties either based on string similarity metrics, synonym information from background knowledge resources such as dictionaries
(e.g., WordNet [18]), or, more recently, pre-trained word embeddings [19,20]. Background knowledge resources can even include
a corpus of formerly matched schemas as support for a new match [21,22]. Some approaches additionally utilize the structural
similarity of elements (e.g., based on the similarity of neighbors in an ontology) and the similarity of associated instance data [23,24].

Taking these considerations into account, we have used four of the existing pairwise tools as unsupervised baselines in our
comparative evaluation according to their reported performance or similarity to our proposal. Two of them, Agreementmaker Light
(AML) [25] and FCA-Map [26] because of their good results in the OAEI (ontology alignment evaluation initiative). The proposal
by Duan et al. [24] because of its use of property instances, and SemProp [19] because of its use of word embeddings. They do
not use supervised machine learning to learn optimized similarity thresholds but require the user to fine-tune parameters manually
or with the help of some technique [27]. In particular, AML compares property names by doing a full-name match and computing
word similarity, string similarity, and WordNet similarity. If any of the matchers returns a similarity above a user-given threshold
(0.6 by default), the pair is considered a match. FCA-Map applies lexical matching to properties based on exact token co-occurrence.
The technique by Duan et al. uses local sensitive hashing to estimate the similarity between two groups of instances. SemProp uses
word embeddings to identify when two concatenated property names have semantic coherence.

The use of supervised machine learning is being increasingly applied for a simplified configuration of schema and ontology
matching, since it can be considered a way to aggregate several similarity metrics or matchers, removing the need to set manual
thresholds or use vector distance metrics such as the cosine similarity, which give the same weight to all features [28–30,30–35].
Recent efforts have also developed frameworks for the application of machine learning to existing ontology matching techniques [36]
The training data consists of the similarity of matching and non-matching pairs of schema/ontology elements together with multiple
similarity values, e.g., according to different linguistic and structural similarities. Surprisingly, instance similarities have not been
utilized so far in these approaches. As a representative baseline we consider the approach of Nezhadi et al. [29] in our evaluation.
It uses 12 name string similarity metrics as well as metrics derived from background knowledge by computing the distance of
two concepts in the WordNet graph, and structural metrics based on the propagation of name similarities. They also considered 5
classification alternatives to determine matches and found out that an AdaBoost aggregation of Decision Tree classifiers achieves
the best results.

The main limitation of supervised machine learning techniques is the need for training data. There are two main ways to deal with
this requirement: manual provision of training data or the use of transfer learning. Manually labeling selected pairs of properties or
concepts is of course laborious and does not scale well. This approach thus has to be limited to relatively small amounts of training
3
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data. With transfer learning the goal is to obtain the training from another domain or use case to avoid the provision of specific
training [32]. This is especially valuable for scenarios such as knowledge graphs, in which there are typically already integrated
entities and properties from different sources so that matching information can likely be reused. In our evaluation, we will consider
both approaches: the use of manually defined training matches as well as transfer learning.

Most previous work focuses on pairwise schema and ontology matching for two sources [22] while we have to deal with an
arbitrary number of sources with different sets of properties per entity type. While multi-source property matching also builds on
pairwise property matching, the degree of heterogeneity and thus the difficulty to achieve good match quality increases with more
sources. In our approach, we will determine pairwise similarities between properties that can be maintained in a similarity graph
of properties from several sources. Such a graph can be used as input for clustering so that all matching properties are in the same
cluster that can be used as a basis to fuse these properties. Property clustering is beyond the scope of this paper but can be done
with similar algorithms to those used for clustering entities based on a similarity graph, e.g., [37,38]. Other similar approaches have
been proposed to refine the initial matching [39,40].

Regarding performance, obtaining a full match between two ontologies involves measuring the similarity of all possible property
pairs, which results in quadratic time complexity. If there is a large number of sources, while one of them can be used as reference,
the number of comparisons would still increase linearly with the number of sources. To avoid unmanageable matching times while
keeping effective property pair similarity measurements, a popular approach is to perform a previous pruning of the property pairs to
obtain a reduced, more manageable set of candidates [24,41]. This can be achieved through simple heuristics or grouping techniques,
which can be seen as matching techniques that focus on high recall and reduction rate. Therefore, the problem of matching can
be separated into candidate selection and the final, actual matching, as happens with other similar problems with a large search
space [7]. The selection of candidates is beyond the scope of this paper, in which we focus on final matching, but nothing would
prevent the previous application of filtering techniques.

3. Problem definition

We first provide some preliminary definitions in Section 3.1, then we describe the problem we focus on in a formal way with
well-defined input and output in Section 3.2.

3.1. Preliminaries

Source: A source 𝑆 is a location from where information comes, e.g., a website, a relational database, or a SPARQL endpoint,
among other examples. It typically conforms to some kind of ontology and may contain structured entities of several types
or classes. The example in Fig. 1 contains camera entities from four different sources, namely e-commerce websites such as
‘‘Mypriceindia.com’’ and ‘‘Shopmania.in’’.

ntity and class: An entity 𝑒 is a representation of something that can be uniquely identified, usually corresponding to some real
world object. Entities belong to a certain source and a source-specific type or class 𝐶, and we denote the source and class of
entity 𝑒 with 𝑆(𝑒) and 𝐶(𝑒), respectively. The rectangles in Fig. 1 correspond to different entities of type ‘‘camera’’: ‘‘Fujifilm
Finepix Z20’’, ‘‘Nikon D3300’’, ‘‘Kodak DC220’’, and ‘‘Pentax K-5 II’’. Entities consist of several properties and their values.

Property and instances: A property is an attribute to describe information about entities. The values of a property are literals
known as instances. Our algorithm processes a collection of property instances represented as tuples (𝑝, 𝑒, 𝑣) where 𝑝 is the
property name, 𝑒 is the entity (identifier), and 𝑣 is the property value. An example instance is (‘‘camera resolution’’, ‘‘Fujifilm
Finepix Z20’’,‘‘12 MP’’). The components of a property instance 𝑖 = (𝑝, 𝑒, 𝑣) are denoted by 𝑝(𝑖), 𝑒(𝑖), and 𝑣(𝑖). Each such tuple
is implicitly tied to the originating class 𝐶(𝑒(𝑖)) and source 𝑆(𝑒(𝑖)).

lass schema: For the sake of flexibility in applications such as E-commerce, we do not assume the existence of a predefined
schema with a fixed set of properties per class. Rather, we view the schema of class C as the collection of all differently named
properties for entities of class C in the respective sources. Individual entities may use any subset of these class properties.

roperty matching: Task of determining correspondences between the properties of different class schemas from different sources.

.2. Definition

We address property matching for properties of the same class (e.g., camera properties). We consider the case of multi-source
atching so that properties may relate to entities from an arbitrary number of sources. Correspondences are not limited to

quivalence relationships but also to more complex relationships between semantically related properties. A property in one source
ay thus have 0, 1 or several matching properties in another source, e.g., as for property ‘‘shutter speed’’ in Fig. 1.

Therefore, the problem is as follows: Given a collection or property instances 𝐼 corresponding to properties from 𝑚 sources with
> 1, we define property matching as a binary classification problem where every pair of properties (𝑝𝑖, 𝑝𝑗 ) from two different

ources is classified as related or unrelated. Alternatively, every pair of properties can be assigned a similarity score 𝑠𝑖𝑚 indicating
he strength of the relatedness. To enable the application of supervised machine learning techniques, we also assume the provision

f training data consisting of pairs of properties from different sources labeled as either matching or non-matching.

4
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The output can be represented as a similarity graph between properties of different sources. Such a graph can be used for
etermining clusters of matching properties, e.g., using clustering algorithms like transitive closure or more complex approaches
s in [37,38]. A simple transitive closure would group all same-shaped properties in Fig. 1 within a cluster. This would be sub-
ptimal if we want to ensure that only equivalent properties are grouped together, e.g., as useful for a fusion of property values
ithin a KG. In such a case the properties ‘‘min shutter speed’’ and ‘‘max shutter speed’’ should be in separate clusters. This can
e achieved with clustering techniques like in [38] that do not permit more than one cluster member from the same source. An
lternative approach is to post-process the match correspondences, adopting a similar approach as in [42] that can determine the
emantic type of correspondences (such as equality and part-of) and only continue with equality correspondences. The analysis of
uch post-processing options is beyond the scope of this paper and left for future work.

. Our approach

Having defined the problem of property matching, we give an overview of our proposal LEAPME (Section 4.1), and describe
n detail how features are computed (Section 4.2). We discuss the use of embeddings in Section 4.3. Finally, we describe aspects
elated to the implementation of LEAPME in Section 4.4.

.1. Overview

LEAPME is a supervised ML-based property matching approach that focuses on the use of novel features. It computes features
rom property instances, property names, and property pairs to obtain large feature vectors that can be properly handled by a
lassifier. For example, from the instance value ‘‘12 MP’’ we can compute features such as the number of digits (2), the number of
hite spaces (1), or the fraction of letters (0.4). LEAPME thus uses such characteristics about instance values (and property names)

n addition to their actual values.
Algorithm 1 describes the main steps of LEAPME; the workflow is also illustrated in Fig. 2.

1. First, there is the initialization of the instance feature vector 𝐼𝐹 , the property feature vector 𝑃𝐹 , the property pair feature
vector 𝑃𝑃𝐹 , and the output similarity graph (collection of matches) 𝑆𝑖𝑚 (line 1 of Algorithm 1).

2. Next, the instance features are determined by every instance with the help of function 𝑖𝐹 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, and added to the respective
property in the instance feature vector 𝐼𝐹 (lines 2–3 of Algorithm 1, step 1 in Fig. 2). The features we determine will be
described below — they include meta-features about the instance values as well as an embedding vector for the specific
property value.

3. In lines 4–6 of Algorithm 1 we compute property features with the help of function 𝑝𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (steps 2 and 3 in Fig. 2).
They can be derived for the property name or based on the aggregation of instance features, e.g., average values of numeric
instance features.

4. For each property pair, we compute the property pairs features using function 𝑝𝑝𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (lines 7–9 of Algorithm 1, step 4
in Fig. 2), which may be partially based on the aggregation of property features.

5. We use the input training data with their labeled property pairs and associated feature vectors to train a classification model
using function 𝑡𝑟𝑎𝑖𝑛𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟 in line 10 (𝑙𝑎𝑏𝑒𝑙𝑒𝑑(𝑃𝑃𝐹 ) denotes the already labeled property pairs). Then, we apply the
trained classifier to the unlabeled property pairs to obtain a match decision and similarity score for each pair (lines 11–12
of Algorithm 1, step 5 in Fig. 2).

s shown in the last step of Fig. 2, the output represents a similarity graph that can be post-processed as discussed above. All the
eatures we have used so far are associated to a single instance (𝑖𝐹 𝑒𝑎𝑡𝑢𝑟𝑒𝑠), a single property (𝑝𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠) or a pair of properties
𝑝𝑝𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠). Other types of features that do not match these groups could be identified in the future. In that case, those features
ould be computed in an additional step, and added to the 𝑝𝑝𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 that are ultimately used by the classifier.

Since we iterate over every pair of features, the time complexity of our algorithm is quadratic as is typical for property matching
echniques, which can be problematic in a multi-source scenario with many sources and many properties. However the simplicity of
he algorithm avoids unreasonable matching times, and there is a large body of known optimization techniques that can be easily
pplied to our approach such as the parallel match processing on multiple processors and filtering techniques to largely reduce the
umber of match comparisons [22,24,41].

.2. Features

Since we classify pairs of properties, the features that are ultimately fed to the classifier must be associated to a pair of properties.
owever, as we have mentioned, LEAPME considers features at several levels that can be later transformed into property pairs

eatures. Next, we describe in detail each of these levels:

nstance features: These features are computed from each individual instance of a property (that is, a features vector is obtained
for each property value) independently of the property names. They provide information about the format of property values
and can thus be considered as meta-features. We expect matching properties to follow similar formats, which should be
reflected in these features. For example, while in Fig. 2 properties ‘‘Res(mp)’’ and ‘‘megapixel’’ have a different name, both
have short values with numeric characters, which could be reflected in features that measure the number of such characters
5
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Fig. 2. Workflow of LEAPME.
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Algorithm 1: LEAPME
Input:
- 𝐼 : set of property instances from 𝑚 sources
- labeled property pairs (training)
Output:
- 𝑆𝑖𝑚: set of property pairs with similarities (similarity graph)
Variables:
- 𝐼𝐹 : Map< 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝐹 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑉 𝑒𝑐𝑡𝑜𝑟𝑆𝑒𝑡 > with instance features vectors, grouped by property
- 𝑃𝐹 : Map< 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝐹 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑉 𝑒𝑐𝑡𝑜𝑟 > with property features vectors.
- 𝑃𝑃𝐹 : Map< 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑖𝑟, 𝐹 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑉 𝑒𝑐𝑡𝑜𝑟 > with property pair features vectors.
- 𝑚: classification model

1 initialize(𝐼𝐹 , 𝑃𝐹 , 𝑃𝑃𝐹 , 𝑆𝑖𝑚)
// Steps 1-4: compute features

2 for 𝑖 ∈ 𝐼 do
3 𝐼𝐹 [𝑝(𝑖)] ← 𝐼𝐹 [𝑝(𝑖)] ∪ iFeatures(𝑖))
4 for (𝑝, 𝑉 ) ∈ 𝐼𝐹 do
5 𝑃𝐹 [𝑝] ← pFeatures(𝑝)
6 for 𝑝1 ∈ keyset of 𝑃𝐹 do
7 for 𝑝2 from different source ∈ keyset of 𝑃𝐹 do
8 𝑃𝑃𝐹 [(𝑝1, 𝑝2)] ← ppFeatures(𝑝1, 𝑝2)

// Step 5: training and classification
9 𝑚 ← trainClassifier(𝑙𝑎𝑏𝑒𝑙𝑒𝑑(𝑃𝑃𝐹 ))
10 for (𝑝1, 𝑝2) ∶ 𝑣 ∈ 𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑(𝑃𝑃𝐹 ) do
11 𝑆𝑖𝑚.𝑎𝑑𝑑((𝑝1, 𝑝2, 𝑚.classify(𝑣)))

or token types. While on their own these features may not be enough to properly match features (since, for example, many
properties follow similar numeric formats), they could help disambiguate problematic cases. Furthermore, in some contexts
the name of the properties may be unknown or only a generic identifier. For example, information extraction techniques may
identify a piece of text as an instance, but not be able to infer a label with its property name [12]. In these cases, no features
can be computed from the property names, and only these instance features enable matching. In addition to format-oriented
meta-features we also consider the actual property values in the form of word embeddings or the numeric value (see below).

roperty features: These features are computed for each individual property. They include all features computed from the property
name, such as the average embeddings vector of its words. Furthermore, by grouping the instance features on a per-property
basis, we can aggregate them and turn them into property features. For example, we could compute the average of each
instance feature for a given property to represent the overall format followed by its instances.

roperty pair features: These features are computed for each pair of properties to be classified. These are the final features actually
fed to the classifier. Traditional string similarity metrics such as the Levenshtein or Jaro–Winkler distance would be part of
these features, since they are computed from a pair or property names. Aggregated property features can also be used to
determine property pair features. In this case, only two vectors are aggregated, e.g. by computing the numeric difference or
average between the vectors, or by determining their concatenation.

Note that while only property pair features are relevant to the classification of property pairs, the other features are also used
ut are necessarily transformed into property pair features. For example, since a property can have hundreds of instances, there is
need to aggregate the hundreds of sets of instance features.

.3. Embeddings and classification

When matching properties, a high value of the string similarity of the property names is usually a clear indicator of a match. Low
imilarity, however, can be caused by the issues we mentioned in Section 1. As discussed in Section 2, the usual way to mitigate this
roblem is to use external knowledge bases like WordNet to determine synonyms or name-independent similarities. These resources,
owever, are language-dependent and often of limited coverage. Furthermore, their use is relatively complex, and may require the
se of APIs to handle the data.

As a more promising and versatile approach to overcome these limitations, we propose the use of word embeddings for both
roperty names and property values. They can provide rich information about the semantics of a property that can help solve some
ssues such as the potentially low string similarity between synonymous properties. While embeddings are language-dependent,
ersions for different languages can easily be trained from any large text corpus, unlike knowledge bases such as WordNet, whose
7
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Table 1
Features used in our implementation.

Type Id Description # of features

Instance

1 The fraction and number of occurrences of several character types
(letters (uppercase, lowercase, and both), mark characters,
numbers, punctuation, symbols, separators, other)

18

2 The fraction and number of occurrences of several token types
(words, words starting with a lowercase letter, words starting with
an uppercase letter followed by a non-separator character,
uppercase words, numeric strings)

10

3 The numeric value of the instance (-1 if it is not a number) 1
4 The average embeddings vector of the words in the instance 300

Property 5 The average of every instance feature 329
6 The average embeddings vector of the words in the property name 300

Properties pair

7 The difference between the features vectors of the two properties 629
8 The optimal string alignment distance between the property names 1
9 The Levenshtein distance between the property names 1
10 The Full Damerau-Levenshtein distance between the property names 1
11 The longest common substring distance between the property names 1
12 The 3-gram distance between the property names 1
13 The cosine distance between the 3-gram profiles of the property

names
1

14 The Jaccard distance between the 3-gram profiles of the property
names

1

15 The Jaro–Winker distance between the property names 1

creation requires a large manual effort. Furthermore, embeddings can be trained with a context-specific corpus, and are more likely
to contain certain concepts. For example, the GloVe embeddings we use contains an entry for the word ‘‘28 mm’’, which is a typical
aperture value for cameras.

Embeddings vectors usually have hundreds of components with unknown meanings that may require nonlinear combinations to
roperly exploit their predictive power. For that reason, LEAPME uses a neural network for classification, which is also a popular
hoice in the related work and is able to properly weight features even when there is a large amount of them. While word embeddings
ave already been used in the past as discussed in Section 2, they have been exploited in an unsupervised way. Unsupervised
echniques that use embeddings are forced to compute the distance (usually the cosine distance) between several embedding vectors,
iving the same importance to all components, which may be detrimental when the number of components is high.

.4. Implementation

Table 1 provides an overview about the features we have implemented. Instance features are computed with TAPON [43,44],
hich includes several format-related features to which we added the embedding ones.

The rationale behind these features is the following: Features 1 and 2 contain information about the textual format of the
nstances, including absolute and relative frequencies of both character and token types. We expect similar properties to follow
imilar formats (for example, properties related to the ISO sensibility of a camera will usually contain at least 3 numeric characters).
eature 3 provides information about the specific value of purely numeric properties in order to disambiguate them according to the
istribution of their values. Feature 4 provides information about the semantics of every instance. Feature 5 aggregates the instance
eatures in order to transform them into property features by computing their average, which gives an overall idea of the format
nd the instance semantics of a property. Feature 6 provides information about the semantics of a property from its name. Feature
aggregates the property features of two properties by computing the difference of each feature in order to obtain information

bout the distance with regards to every feature. Features 8 to 15 use traditional string distance metrics applied to the names of
he properties, since properties with similar names are usually related.

To compute embeddings, we use the pre-trained GloVe approach [45],1 specifically for the uncased Common Crawl corpus that
includes 300-dimensional vectors for 1.9 million words, promising a good coverage for different domains, since the corpus should
contain a great variety of tokens. Unknown words are mapped to a vector filled with zeros. Each word in a property value or
property name can thus be mapped to a point in the 300-dimensional data space so that similar words will have a small distance in
it. For each property value and name we determine the average embeddings of the individual words represented by 300 values that
serve as features for our classification approach. We can deal with such relatively large feature vectors since the use of supervised
machine learning with a neural network should be able to identify the most important ones features and give them an appropriate
weight.

As indicated in Table 1, we currently use 28 meta-features for instance values. The actual instance values are reflected in one
feature for numeric values and 300 features of the embeddings vector. The averages for these 329 features over all instance values
of a property serve as property features. They are complemented with 300 features of the embeddings vector for the property

1 https://nlp.stanford.edu/projects/glove/
8
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n
c

Table 2
Sample feature values for matching and non-matching property pairs.

Prop. 1 Prop. 2 Label Levenshtein Fraction of
letters

Fraction of
numbers

Inst. emb.
3/300

Inst. emb.
4/300

Name emb.
65/300

Name emb.
66/300

. . .

camera resolution megapixel POS 13.00 0.00 0.10 0.13 0.07 0.70 0.04 . . .
camera resolution effective pixels POS 15.00 0.66 0.26 0.06 0.10 0.46 0.00 . . .
camera resolution dynamic af mode NEG 16.00 0.54 0.31 0.18 0.33 0.31 0.59 . . .
camera resolution alarm trigger NEG 14.00 0.81 0.42 0.23 0.41 0.38 0.69 . . .

name. The final feature vectors for property pairs thus include 629 features regarding the difference between the property features.
Together with 8 features about the string similarity of property names there are 637 features for property pairs in total. While having
to compute these features for training samples and training a classifier adds complexity to the application of our proposal, sets of
features can be removed if they are not considered necessary. For example, instance features can be omitted to avoid iterating over
every instance. The consequences of using different groups is studied in Section 5.

Table 2 shows an example for a small subset of our features computed for four labeled property pairs (two matching and two
on-matching). Note that the Levenshtein distances are similarly high in both positive and negative match cases while other features
an better discriminate between them. For example, for feature ’’fraction of letters’’ the difference is 0 between properties ‘‘camera

resolution’’ and ‘‘megapixel’’ and can thus help to determine such a match. Some of the embedding features (corresponding to
individual components of the embeddings vectors) have good discriminating potential, with a low difference in positive and high
difference in negative match cases (e.g., instance embedding 4 and name embedding 66).

Finally, regarding the architecture of the neural network behind LEAPME, it consists of two fully connected hidden layers of
sizes 128 and 64. We use a batch size of 32 and perform 10 epochs with learning rate 10−3, 5 with 10−4, and 5 with 10−5. We
fine-tuned these hyper-parameters manually in preliminary tests, though most alterations (such as changing the size of the layers)
do not significantly impact on the results. The final layer has two neurons from which the final score is obtained for the two possible
outcomes (positive/negative). This allows the use of the positive output as a similarity score, which is useful for post-processing
steps such as property clustering.

5. Evaluation

We experimentally evaluate our property matching approach LEAPME on four real-word datasets with up to 24 sources. We
analyze the impact of different amounts of training data and the effectiveness of the different kinds of features; in particular, the
use of embeddings for both property values and property names. We further compare LEAPME with five baselines and study the
use of transfer learning. The focus is on match quality with the standard metrics precision, recall and F-measure (F1 score).

We first give some details about the studied feature configurations for LEAPME and the baseline approaches. Next, we describe
the four datasets and the two use cases with training data from either the same or a different domain. The results for the two
use cases are discussed in Sections 5.4 and 5.5 , respectively. The evaluated implementations along with the detailed results and
additional material are available online.2

5.1. Feature configurations and baselines

The rich set of features exploited by supervised learning is a main advantage of LEAPME and we therefore analyze the
effectiveness of the different kinds of features in detail. Along one dimension, we compare the use of instance-related features only,
name-related features only and the combined use of both kinds of features. Another dimension is the consideration of embedding-
based features only, non-embedding features only or the combined use of both kinds of features. In total, this sums up to 9 possible
feature configurations to analyze.

The LEAPME results are compared to the results obtained by the following baselines:

• The latest Github implementation of Agreement Maker Light [25] (AML), the highest-ranked technique in the M2 variants of
the ‘‘Conferences’’ track of OAEI 2019, which involve the matching of only properties.3

• The latest Github implementation of FCA-Map [26], the best-performing property matching technique in the ‘‘Knowledge
Graph’’ track of OAEI 2019.4

• An implementation of the machine learning proposal by Nezhadi et al. [29]. It was selected among machine learning proposals
for having the largest features catalog, from which we removed the structural features since they were not applicable to our
evaluation datasets. We use AdaBoost with decision trees as classifier, which achieved the best results in [29].

• An implementation of SemProp [19], selected as a representative of existing proposals that use word embeddings. We used the
proposed matchers graph by removing the use StructS, which is not applicable since we only match properties, where there
are no class hierarchies involved. We tested all combinations of values 0.2, 0.4, 0.6, 0.8 for the thresholds used by the SynM,
SeMa(-), and SeMa(+) matchers. For our final experiments we used the combination that yielded the highest average F1 score
across our datasets: 0.2 for SynM, 0.2 for SeMa(-), and 0.4 for SeMa(+).

2 https://github.eii.us.es/dayala1/LEAPME
3 http://oaei.ontologymatching.org/2019/results/conference/index.html
4 http://oaei.ontologymatching.org/2019/results/knowledgegraph/index.html
9
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Table 3
Datasets metadata. Each vertical bar in a plot represents a source within a dataset.

Cameras Headphones Phones TVs

# of Sources 24 6 12 8

Entities 2400 128 208 124

Properties 3245 172 554 415

Instances 65615 1129 5195 2069

Positives 9199 412 2677 1062

Entities
per source

Instances
per source

Properties
per source

• An implementation of the proposal by Duan et al. [24] based on local-sensitive hashing (LSH), selected as a representative of
existing proposals that use property instances for matching. We tested both variants (random projections and minhash) with
the proposed number of hash functions (1000 and 500 respectively) and the following band sizes: all integers from 1 to 10,
and integers from 10 to 50 in steps of 5. For our final experiments, we used the combination that yielded the highest average
F1 score across our datasets: minhash with a band size of 1.

.2. Datasets

For our evaluation, we use four real-word datasets with different kinds of e-commerce products (cameras, headphones, phones,
nd TV sets) from multiple sources.

All datasets align the properties in each source to a reference ontology. We consider that two properties are related (matching)
hen they are both aligned to the same reference property. All four datasets have been extracted from the Web using information
xtraction techniques, and contain noise that is typical of real world scenarios, making matching more challenging.

Table 3 provides main statistics for the four datasets. The camera dataset comes from the DI2KG19 challenge [46]. It is the largest
ataset with 24 sources, more than 3200 properties and about 9200 matching property pairs. We limited the number of entities
o 100 per source in order to balance their size and impact. But, as shown in the lower part of Table 3, the number of different
roperties and the number of property entities differs substantially between different sources, with almost 700 properties for one of
he sources (EBay.com). The other datasets contain headphones, phones and TV product entities and correspond to the WDC Gold
tandard for Product Matching and Product Feature Extraction [47]. These are much smaller than the camera dataset and there are
ifferent numbers of entities per source leading to a less balanced setting than that of the camera dataset. In our analysis of the
esults, we will refer to the three smaller and imbalanced datasets as low-quality datasets as opposed to the high-quality camera
ataset.

.3. Use cases and training data

For training, we differentiate two use cases in which the training data either refers to properties from the same domain (entity
ype) or to properties from a different domain. For the first use case, which we call Single Domain (SD), we take a fraction of the
ources of a dataset (at random) for training. We use the examples that involve two sources of data in the training set to train the
lassifier, and test it with the rest. We performed experiments using different training fractions: 0.2, 0.4, 0.6, and 0.8. For each of
hese fractions and for each dataset, we ran LEAPME 25 times, using different random combinations of training sources.

For the second use case, called Transfer Learning (TL), we train the classifier for one dataset (entity type) with training data
rom the other datasets.

For this purpose, we tested all possible combinations of using 1, 2, or 3 datasets for training.
Fig. 3 shows an example of how data is divided into training and testing for both use cases. The example illustrates SD training

or the camera dataset where each labeled property pair uses properties from two of the 24 sources. For the TL use case, there
re many possible configurations. The shown example refers to training pairs from two datasets to be used for evaluating property
atching for the rest.

For all datasets and use cases, the training data consists of two negative (non-matching) pairs of properties for every positive
matching) pair, and the negative pairs are randomly selected.
10
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Fig. 3. Use cases testing example.

5.4. Single-domain results

Next, we compare the results obtained by different configurations of LEAPME, as well as those obtained by the five baselines.
We first evaluate the results in the single-domain case and compare LEAPME with the five baselines. Fig. 4 shows the precision (in

blue) and recall (in red) results for the four datasets for different amounts of training data (0.2 to 0.8) for the supervised approaches
LEAPME and Nezhadi. The results for the unsupervised approaches are shown as horizontal lines since they do not depend on training
data. The results for LEAPME are obtained by using both features for property names and instances but we differentiate the three
cases of the use of embedding features only, the use of non-embedding features only and the use of all features. The value ranges
for the supervised approaches reflect the different training configurations involving a random selection of the sources in a dataset.
The variations are generally higher for the smaller and unbalanced datasets like headphones that provide fewer training data. We
make the following observations:

• Unsupervised techniques can achieve a high precision but struggle to reach a similar recall. This improvement would justify
the use of supervised learning if possible despite the increased application complexity.

• LEAPME achieves better overall results than all the baselines, with a dramatic increase of recall when compared to AML and
FCA-Map and both recall and precision improvements when compared to the rest.

• The use of embedding features always improves recall compared to the sole use of non-embedding features, but they need
enough training data to reach or surpass their precision. As expected, using all features achieves the best results for LEAPME.

• When only using embeddings, LEAPME achieves, with 20% of training data, significantly better results than SemProp, except in
the cameras dataset, where results are similar. When using more training data, LEAPME achieves much better results, showing
that the use of embeddings greatly benefits from supervised learning.

For a more detailed analysis, we summarize the average results, including F1 scores, in Table 4 for both 20% and 80% training
data. The table also provides results for the sole use of instance features and the sole use of name features, again differentiated by
the use of embedding features only, non-embedding features only or both. The best F1 results of each row have been marked in
bold. We make the following additional observations.

• For all datasets, LEAPME achieves a better F1 score than all baseline approaches even when using only 20% training data.
For 80% training data, it achieves excellent F1 scores from 88% (for headphones) to 98% (for cameras). In this case, the
baselines are outperformed especially for the low-quality and more challenging datasets (headphones, phones, and TVs). The
unsupervised baselines were outperformed by up to 42 F1 percentage points (50 vs 92% for the TV dataset) and the supervised
baseline of Nezhadi by up to 18 percentage points (71 vs 89% for the phones dataset).

• When only using property names LEAPME without embedding features already outperforms the baselines. The embedding
features for property names are the most effective features in LEAPME. Their use alone is more more effective than the use of
non-embedding features relying on string similarities.

• Only using instance features achieves weaker results for LEAPME than using name features especially with little training. Again,
using embedding features is more effective than using the non-embedding ones that focus on format-oriented meta-features.
Still, the combination of both instance and name features helps to achieve a slight improvement over the sole use of name
features in most cases.
11
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Fig. 4. SD use case results. Matching with both property names and values. LEAPME(emb) = LEAPME with embedding features only. LEAPME(-emb) = LEAPME
without embedding features. Dashed line = AML. Solid line = FCA-Map. Dotted line = SemProp. DotDash line = LSH.

Table 4 includes a number of further interesting results such as that SemProp outperforms the other unsupervised baseline
pproaches due to its use of embeddings. For the TV dataset, the use of non-embedding features proved to be slightly more effective
han the use of embeddings for 20% of data for training showing that the effectiveness of embeddings can depend on the availability
f a sufficient amount of training.

.5. Results for transfer learning

Fig. 5 shows the precision and recall results of our experiments in the TL use case. Each point corresponds to a different
ombination of three or less datasets used for training, the rest being used for validation. Note that baseline results are the same
hen using both name and instances or only of them, since even when both are available, they only use one. The figure also
istinguishes between the use of high-quality and low-quality datasets for training.

We observe that, similarly as in the SD use case, the unsupervised baselines can achieve high precision but suffer from a lower
ecall. LEAPME again achieves the best results for embedding features especially for names or both names and instances. The best
esults are generally achieved when the training includes data from the high quality dataset (camera dataset) that can also provide
ore training samples than the low-quality datasets. LEAPME achieves near-perfect precision and recall when using it for training,
emonstrating that it can make excellent use of transfer learning for good training data from a different domain. By contrast, the
upervised technique by Nezhadi et al. only achieves better precision for training from a high-quality dataset but worse recall making
t less suitable for transfer learning. SemProp can achieve results similar to LEAPME, but only when low quality training data is
12
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Table 4
SD use case summary with F1 scores. LEAPME(emb) = LEAPME with embedding features only. LEAPME(-emb) = LEAPME without embedding features.

Info Dataset Train. % LEAPME LEAPME(emb) LEAPME(-emb) Nezhadi AML FCA-Map SemProp LSH

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Instances

cameras 20% 0.66 0.55 0.59 0.72 0.52 0.58 0.55 0.43 0.44 - - - - - - - - - - - - 0.54 0.73 0.62
80% 0.93 0.75 0.83 0.91 0.77 0.83 0.64 0.59 0.61 - - - - - - - - - - - -

headphones 20% 0.54 0.61 0.56 0.61 0.64 0.60 0.54 0.57 0.54 - - - - - - - - - - - - 0.75 0.43 0.55
80% 0.76 0.70 0.69 0.64 0.70 0.64 0.60 0.51 0.53 - - - - - - - - - - - -

phones 20% 0.60 0.59 0.58 0.58 0.63 0.59 0.47 0.41 0.42 - - - - - - - - - - - - 0.74 0.21 0.33
80% 0.84 0.75 0.79 0.85 0.74 0.79 0.59 0.44 0.50 - - - - - - - - - - - -

tvs 20% 0.61 0.62 0.60 0.61 0.62 0.60 0.49 0.57 0.52 - - - - - - - - - - - - 0.78 0.28 0.41
80% 0.83 0.74 0.78 0.84 0.73 0.78 0.65 0.60 0.61 - - - - - - - - - - - -

Names

cameras 20% 0.89 0.88 0.88 0.87 0.86 0.86 0.91 0.75 0.82 0.86 0.82 0.83 0.99 0.61 0.75 0.99 0.38 0.55 0.82 0.75 0.78 - - -

80% 0.99 0.98 0.98 0.98 0.98 0.98 0.95 0.76 0.84 0.96 0.93 0.94 - - -

headphones 20% 0.68 0.79 0.73 0.67 0.81 0.72 0.82 0.62 0.70 0.73 0.69 0.70 0.95 0.36 0.52 0.99 0.37 0.54 0.67 0.48 0.56 - - -

80% 0.84 0.82 0.82 0.83 0.81 0.81 0.91 0.58 0.70 0.80 0.72 0.75 - - -

phones 20% 0.70 0.71 0.70 0.65 0.74 0.67 0.80 0.51 0.61 0.64 0.56 0.59 0.98 0.34 0.50 0.99 0.34 0.50 0.62 0.68 0.65 - - -

80% 0.93 0.84 0.88 0.91 0.85 0.88 0.92 0.51 0.66 0.74 0.68 0.71 - - -

tvs 20% 0.62 0.77 0.67 0.70 0.78 0.72 0.85 0.68 0.75 0.67 0.70 0.68 0.97 0.40 0.57 0.99 0.34 0.50 0.66 0.65 0.66 - - -

80% 0.95 0.86 0.90 0.93 0.84 0.88 0.93 0.70 0.80 0.83 0.79 0.81 - - -

Both

cameras 20% 0.91 0.83 0.87 0.83 0.77 0.79 0.88 0.74 0.80 0.86 0.82 0.83 0.99 0.61 0.75 0.99 0.38 0.55 0.82 0.75 0.78 0.54 0.73 0.62
80% 0.99 0.97 0.98 0.98 0.97 0.98 0.93 0.82 0.87 0.96 0.93 0.94

headphones 20% 0.74 0.81 0.76 0.65 0.80 0.70 0.79 0.68 0.73 0.73 0.69 0.70 0.95 0.36 0.52 0.99 0.37 0.54 0.67 0.48 0.56 0.75 0.43 0.55
80% 0.89 0.87 0.88 0.88 0.90 0.89 0.80 0.68 0.72 0.80 0.72 0.75

phones 20% 0.71 0.72 0.70 0.59 0.70 0.63 0.66 0.52 0.56 0.64 0.56 0.59 0.98 0.34 0.50 0.99 0.34 0.50 0.62 0.68 0.65 0.74 0.21 0.33
80% 0.93 0.85 0.89 0.92 0.86 0.89 0.83 0.57 0.68 0.74 0.68 0.71

tvs 20% 0.64 0.80 0.70 0.60 0.81 0.67 0.71 0.67 0.67 0.67 0.70 0.68 0.97 0.40 0.57 0.99 0.34 0.50 0.66 0.65 0.66 0.78 0.28 0.41
80% 0.95 0.89 0.92 0.94 0.86 0.90 0.88 0.77 0.82 0.83 0.79 0.81

Fig. 5. TL use case results. Rhombuses = high quality datasets in training split. Circles = high quality datasets in testing split.
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used. This indicates that the use of embeddings in LEAPME in a supervised way is a key reason for its highly effective use of transfer
learning.

6. Conclusions

We have presented LEAPME, a new powerful approach for matching properties from many sources. It is a machine learning
approach that utilizes a large spectrum of features, in particular embedding features, on both property names and instance values.
Our evaluation with four real-world multi-source datasets shows that LEAPME clearly outperforms several baseline approaches
representing the current state-of-the art. The improvements are even achieved for relatively little training data. Moreover, we showed
that the use of embeddings in LEAPME in a supervised way enables an effective use of transfer learning so that existing high-quality
training data from different domains can be utilized to reduce the effort for providing labeled training data. These results, however,
are susceptible to what datasets were used for training and matching, since a relatively small amount of multi-source property
matching datasets were available and it is possible that different configurations will yield worse results. Future efforts should focus
on the creation of such high quality multi-domain datasets, since this could lead to the possibility of training a universal classifier
that achieves results on par with manual annotation.

In future work, we will investigate the use of LEAPME within a more comprehensive data integration approach for knowledge
graphs that also includes entity matching and clustering as well as data fusion. In particular, we plan to evaluate different methods
for deriving clusters of equivalent properties from the match results determined with LEAPME.
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