[40]
[41]
[42] | [43] | Rost, C [44]; Gomez, K [45]; Taeschner, M [46]; Fritzsche, P [47]; Schons, L [48]; Christ, L [49]; Adameit, T [50]; Junghanns, M [51]; Rahm, E [52] Distributed temporal graph analytics with GRADOOP [53] VLDB Journal 2021 Special Issue Paper 2021-05 [54] |
|
[55]
[56]
[57] | [58] | Gomez, K. [59]; Taeschner, M. [60]; Rostami, M. Ali [61]; Rost, C. [62]; Rahm, E. [63] Graph Sampling with Distributed In-Memory Dataflow Systems [64] Proc. Datenbanksysteme für Business, Technologie und Web (BTW) 2021 2021-03 [65] |
|
[66]
[67] | [68] | Rost, C. [69]; Gomez, K. [70]; Fritzsche, P. [71]; Thor, A. [72]; Rahm, E. [73] Exploration and Analysis of Temporal Property Graphs [74] 24th International Conference on Extending Database Technology (EDBT) 2021-03 [75] |
|
[76]
[77]
[78] | [79] | Rost, C. [80]; Thor, A. [81]; Rahm, E. [82] Analyzing Temporal Graphs with Gradoop [83] Datenbank-Spektrum 19(3) 2019-11 [84] |
|
[85]
[86]
[87] | [88] | Gomez, K. [89]; Taeschner, M. [90]; Rostami, M. Ali. [91]; Rost, C. [92]; Rahm, E. [93] Distributed Graph Sampling with In-Memory Dataflow Systems [94] Techn. Report, Univ. of Leipzig, arXiv:1910.04493, Oct 2019 2019-10 [95] |
|
[96]
[97] | [98] | Rost, C. [99]; Thor, A. [100]; Fritzsche, P. [101]; Gomez, K. [102]; Rahm, E. [103] Evolution Analysis of Large Graphs with Gradoop [104] Proc. of Intl. Workshop on Advances in managing and mining large evolving graphs (LEG@ECML-PKDD) 2019-09 [105] |
|
[106]
[107] | [108] | Kricke, M. [109]; Peukert, E. [110]; Rahm, E. [111] Graph data transformations in GRADOOP [112] Proc. BTW, March 2019 2019-03 [113] |
|
[114]
[115] | [116] | Rost, Christopher [117]; Thor, Andreas [118]; Rahm, Erhard [119] Temporal Graph Analysis using Gradoop [120] Proc. BTW workshops, LNI 2019-03 [121] |
|
[122]
[123] | [124] | Rostami, M.A. [125]; Kricke, M. [126]; Peukert, E. [127]; Kühne, S. [128]; Wilke, M. [129]; Dienst, S. [130]; Rahm, E. [131] BIGGR: Bringing Gradoop to Applications [132] Datenbank-Spektrum 2019-03 [133] |
|
[134]
[135] | [136] | Petermann, A. [137] On Pattern Mining in Graph Data to Support Decision-Making [138] Dissertation, Univ. Leipzig 2019 [139] |
|
[140]
[141] | [142] | Nentwig, Markus [143]; Rahm, Erhard [144] Incremental Clustering on Linked Data [145] Proc. IEEE International Conference on Data Mining Workshop, ICDMW 2018, Singapore 2018-11 [146] |
|
[147]
[148]
[149] | [150] | Saeedi, Alieh [151]; Nentwig, Markus [152]; Peukert, Eric [153]; Rahm, Erhard [154] Scalable Matching and Clustering of Entities with FAMER [155] Complex Systems Informatics and Modeling Quarterly (CSIMQ), Issue 16, Sep./Oct. 2018, pp 61–83 2018-11 [156] |
|
[157]
[158] | [159] | Junghanns, Martin [160]; Kießling, Max [161]; Teichmann, Niklas [162]; Gomez, Kevin [163]; Petermann, Andre [164]; Rahm, Erhard [165] Declarative and distributed graph analytics with GRADOOP [166] PVLDB 2018-08 [167] |
|
[168] | [169] | Bergami, G. [170]; Petermann, A. [171]; Montesi, D. [172] THoSP: an Algorithm for Nesting Property Graphs [173] Proc. ACM SIGMOD Workshop on Graph Data Management Experiences & Systems and Network Data Analytics (GRADES-NDA) 2018-06 [174] |
|
[175]
[176] | [177] | Saeedi, Alieh [178]; Peukert, Eric [179]; Rahm, Erhard [180] Using Link Features for Entity Clustering in Knowledge Graphs [181] Proc. ESWC 2018 (Best research paper award) 2018-06 [182] |
|
[183]
[184] | [185] | Petermann, A. [186]; Junghanns, M. [187]; Rahm, E. [188]; DIMSpan - Transactional Frequent Subgraph Mining with Distributed In-Memory Dataflow Systems [189] Proc. Int. Conf. on Big Data Computing, Applications and Technologies (BDCAT) 2017, pp 237-246 2017-12 [190] |
|
[191]
[192] | [193] | Petermann, A. [194]; Micale, G. [195]; Bergami, G. [196]; Pulvirenti, A. [197]; Rahm, E. [198]; Mining and Ranking of Generalized Multi-Dimensional Frequent Subgraphs [199] Proc. International Conference on Digital Information Management (ICDIM) 2017 2017-09 [200] |
|
[201]
[202] | [203] | Saeedi, Alieh [204]; Peukert, Eric [205]; Rahm, Erhard [206] Comparative Evaluation of Distributed Clustering Schemes for Multi-source Entity Resolution [207] Proc. ADBIS, LNCS 10509, pp 278-293 2017-09 [208] |
|
[209]
[210] | [211] | Junghanns, M. [212]; Kießling, M. [213]; Averbuch, A., [214]; Petermann, A. [215]; Rahm, E. [216] Cypher-based Graph Pattern Matching in Gradoop [217] Proc. ACM SIGMOD workshop on Graph Data Management Experiences and Systems (GRADES) 2017-05 [218] |
|
[219]
[220] | [221] | Junghanns, M. [222]; Petermann, A. [223]; Rahm, E. [224]; Distributed Grouping of Property Graphs with GRADOOP [225] Proc. Datenbanksysteme für Business, Technologie und Web (BTW) 2017 2017-03 [226] |
|
[227]
[228] | [229] | Junghanns, M. [230]; Petermann, A. [231]; Teichmann, N. [232]; Rahm, E. [233]; The Big Picture: Understanding large-scale graphs using Graph Grouping with GRADOOP [234] Proc. Datenbanksysteme für Business, Technologie und Web (BTW) 2017 (Demo paper) 2017-03 [235] |
|
[236]
[237] | [238] | Kemper, S. [239]; Petermann, A. [240]; Junghanns, M. [241] Distributed FoodBroker: Skalierbare Generierung graphbasierter Geschäftsprozessdaten. [242] Proc. Datenbanksysteme für Business, Technologie und Web (BTW) 2017 (Workshops) 2017-03 [243] |
|
[244]
[245] | [246] | Petermann, A. [247]; Junghanns, M. [248]; Kemper, S. [249]; Gomez, K. [250]; Teichmann, N. [251]; Rahm, E. [252]; Graph Mining for Complex Data Analytics [253] Proc. ICDM 2016 (Demo paper) 2016-12 [254] |
|
[255]
[256] | [257] | Junghanns, M. [258]; Petermann, A. [259] Verteilte Graphanalyse mit Gradoop [260] JavaSPEKTRUM 05/2016 2016-10 [261] |
|
[262]
[263] | [264] | Petermann, A. [265]; Junghanns, M. [266] Scalable Business Intelligence with Graph Collections [267] it - Information Technology, Special Issue: Big Data Analytics, Vol. 58 (4), 2016, pp. 166–175 2016-08 [268] |
|
[269]
[270] | [271] | Junghanns, M. [272]; Petermann, A. [273]; Teichmann, N. [274]; Gomez, K. [275]; Rahm, E. [276] Analyzing Extended Property Graphs with Apache Flink [277] Proc. Int. SIGMOD workshop on Network Data Analytics (NDA) 2016-07 [278] |
|
[279]
[280] | [281] | Junghanns, M. [282]; Petermann, A. [283]; Gomez, K. [284]; Rahm, E. [285] GRADOOP: Scalable Graph Data Management and Analytics with Hadoop [286] Techn. Report, Univ. of Leipzig, arXiv:1506.00548, June 2015 2015-06 [287] |
|
[288]
[289] | [290] | Rahm, Erhard [291] Scalable graph analytics with GRADOOP [292] Proc. GI-Workshop Grundlagen von Datenbanksystemen (GvDB), Gommern, May 2015 (Invited Talk) 2015-05 [293] |
|
[294]
[295] | [296] | Petermann, A. [297]; Junghanns, M. [298]; Müller, R. [299]; Rahm, E. [300] Graph-based Data Integration and Business Intelligence with BIIIG [301] Proc. VLDB Conf., 2014 (Demo paper) 2014-09 [302] |
|
[303]
[304] | [305] | Petermann, A. [306]; Junghanns, M. [307]; Müller, R. [308]; Rahm, E. [309] FoodBroker - Generating Synthetic Datasets for Graph-Based Business Analytics [310] 5th Workshop on Big Data Benchmarking (WBDB 2014), LNCS 8991, 2015 2014-08 [311] |
|
[312]
[313] | [314] | Petermann, A. [315]; Junghanns, M. [316]; Müller, R. [317]; Rahm, E. [318] BIIIG : Enabling Business Intelligence with Integrated Instance Graphs [319] 5th International Workshop on Graph Data Management (GDM 2014) 2014-03 [320] |
|